ISSN: 2222-6990
Open access
Artificial Intelligence (AI) is a vital element of neuro-marketing research, which improves the process of identifying consumer preferences by using Electroencephalography technology. Employing AI algorithms allows marketers to record and decode brain signals elicited by marketing stimuli precisely. The synergy of AI and EEG in neuromarketing will bring about a revolution in the way marketers conduct research on consumer behavior. AI applications in neuromarketing are not limited to this; they also involve creating neural systems that adapt in real-time by collecting EEG data to alter marketing messages and content per consumer preferences. Moreover, AI can be employed to take over, simulate, and forecast consumer behavior and analyze emotional EEG data to achieve a deeper understanding of consumer behavior. This paper aims to provide preliminary information on the role of AI in neuromarketing using the EEG technique in two dimensions: tracking and processing of the EEG brain signals. The research on the role of AI in neuromarketing using a systematic literature review method is conducted. In summary, the joint utilization of AI and EEG techniques in neuromarketing research can provide us with more insights into consumer behavior, thereby supporting better marketing strategies.
Adaga, E. M., Okorie, G. N., Egieya, Z. E., Ikwue, U., Udeh, C. A., DaraOjimba, D. O., & Oriekhoe, O. I. (2023). The role of big data in business strategy: A critical review. Computer Science & IT Research Journal, 4(3), 327-350. https://doi.org/10.51594/csitrj.v4i3.686
Addula, S. R., Meduri, K., Nadella, G. S., & Gonaygunta, H. (2024). AI and Blockchain in finance: opportunities and challenges for the banking sector. International Journal of Advanced Research in Computer and Communication Engineering, 13(2).
https://doi.org/10.17148/IJARCCE.2024.13231
Adefemi, A., Daudu, C. D., Okoli, C. E., Ayorinde, O. B., Adekoya, O. O., & Ibeh, C. V. (2024). Reviewing the development of floating LNG facilities and their global impact. World Journal of Advanced Research and Reviews, 21(02), 371–381.
https://doi.org/10.30574/wjarr.2024.21.2.0463
Ahmed, R. R., Streimikiene, D., Channar, Z. A., Soomro, H. A., Streimikis, J., & Kyriakopoulos, G. L. (2022). The neuromarketing concept in artificial neural networks: A case of forecasting and simulation from the advertising industry. Sustainability, 14(14), 8546. https://www.mdpi.com/2071-1050/14/14/8546
Amin, C. R., Hasin, M. F., Leon, T. S., Aurko, A. B., Tamanna, T., Rahman, M. A., & Parvez, M. Z. (2020, 1-4 Dec. 2020). Consumer behavior analysis using EEG signals for neuromarketing application. 2020 IEEE Symposium Series on Computational Intelligence (SSCI).
Babatunde, S. O., Odejide, O. A., Edunjobi, T. E., & Ogundipe, D. O. (2024). The role of AI in marketing personalization: A theoretical exploration of consumer engagement strategies. International Journal of Management & Entrepreneurship Research, 6(3), 936-949. https://doi.org/https://doi.org/10.51594/ijmer.v6i3.964
Bansal, S., & Gupta, M. (2023). Towards using artificial intelligence in neuromarketing. In M. Gupta, P. Jindal, & S. Bansal (Eds.), Promoting Consumer Engagement Through Emotional Branding and Sensory Marketing (pp. 16-23). IGI Global. https://doi.org/10.4018/978-1-6684-5897-6.ch002
Cannella, J. (2018). Artificial intelligence in marketing.
Chaddad, A., Wu, Y., Kateb, R., & Bouridane, A. (2023). Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques. Sensors, 23(14), 6434. https://www.mdpi.com/1424-8220/23/14/6434
Cosmas Dominic, D., Adedayo, A., Oladipo Olugbenga, A., Chinelo Emilia, O., Olushola Babatunde, A., & Andrew Ifesinachi, D. (2024). LNG and climate change: Evaluating its carbon footprint in comparison to other fossil fuels. Engineering Science & Technology Journal, 5(2), 412-426. https://doi.org/10.51594/estj.v5i2.803
Fauzi, A. A., & Widyarini, L. A. (2023). Neuromarketing: The physiological tools for understanding consumer behaviour. Malaysian Journal of Social Sciences and Humanities (MJSSH), 8(1). https://doi.org/10.47405/mjssh.v8i1.2081
Guixeres, J., Bigné, E., Ausín Azofra, J. M., Alcañiz Raya, M., Colomer Granero, A., Fuentes Hurtado, F., & Naranjo Ornedo, V. (2017). Consumer neuroscience-based metrics predict recall, liking and viewing rates in online advertising [Original Research]. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01808
Hakim, A., Golan, I., Yefet, S., & Levy, D. J. (2023). DeePay: Deep learning decodes EEG to predict consumer’s willingness to pay for neuromarketing. Frontiers in Human Neuroscience, 17. https://doi.org/10.3389/fnhum.2023.1153413
Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119-132.
https://doi.org/https://doi.org/10.1016/j.ijin.2022.08.005
Ishtiaque, F., Mashrur, F. R., Miya, M. T. I., Rahman, K. M., Vaidyanathan, R., Anwar, S. F., Sarker, F., & Mamun, K. A. A. (2023). AI-based consumers' preference prediction using a research-grade BCI and a commercial-grade BCI for neuromarketing: A systematic comparison. 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), 1-6.
Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications, 40(9), 3803-3812. https://doi.org/https://doi.org/10.1016/j.eswa.2012.12.095
Kotte, S., & Dabbakuti, J. R. K. K. (2023). EEG signal in emotion detection feature extraction and classification using fuzzy based feature search algorithm and deep Q neural network in deep learning architectures. International Journal of Electronics and Communication Engineering, 10(5), 85-95. https://doi.org/https://doi.org/10.14445/23488549/IJECE-V10I5P108
Kumar, V., Rajan, B., Venkatesan, R., & Lecinski, J. (2019). Understanding the role of artificial intelligence in personalized engagement marketing. California Management Review, 61(4), 135-155. https://doi.org/10.1177/0008125619859317
Ledro, C., Nosella, A., & Dalla Pozza, I. (2023). Integration of AI in CRM: Challenges and guidelines. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 100151. https://doi.org/https://doi.org/10.1016/j.joitmc.2023.100151
Mashrur, F. R., Rahman, K. M., Miya, M. T. I., Vaidyanathan, R., Anwar, S. F., Sarker, F., & Mamun, K. A. (2023, 2023). An EEG-based intelligent neuromarketing system for predicting consumers’ choice. The Fourth Industrial Revolution and Beyond, Singapore.
Nazari Ghazvini, S., Vakil Alroaia, Y., & Baharon, R. B. (2023). The study of electroencephalography in neuromarketing research, consumer behavior and performance method: A systematic analysis. Journal of System Management, 9(4), 185-204.
Ndiku, A. C., Ghedira-Chkir, R., Khalifa, A. B., & Dogui, M. (2022, 17-20 May 2022). Electroencephalography signal classification for automatic interpretation of electroencephalogram based on Artificial Intelligence. 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT),
Papi?, T., Mihajlovi?, A., & Gaji?, J. (2023). Advanced technologies as a framework for sustainable marketing campaigns (AI Application in Neuromarketing) International Scientific Conference on Information Technology, Computer Science, and Data Science, Belgrade, Singidunum University, Serbia.
Poels, K., & Dewitte, S. (2019). The role of emotions in advertising: A call to action. Journal of Advertising, 48(1), 81-90. https://doi.org/10.1080/00913367.2019.1579688
Rahul, J., Sharma, D., Sharma, L. D., Nanda, U., & Sarkar, A. K. (2024). A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning. Frontiers in Human Neuroscience, 18.
https://doi.org/10.3389/fnhum.2024.1347082
Ramírez-Arias, F. J., García-Guerrero, E. E., Tlelo-Cuautle, E., Colores-Vargas, J. M., García-Canseco, E., López-Bonilla, O. R., Galindo-Aldana, G. M., & Inzunza-González, E. (2022). Evaluation of machine learning algorithms for classification of EEG signals. Technologies, 10(4), 79. https://www.mdpi.com/2227-7080/10/4/79
Sankary, L. R., Zelinsky, M. E., Ford, P. J., Blackstone, E. C., & Fox, R. J. (2023). Overcoming barriers to informed consent in neurological research: Perspectives from a national survey. Res Ethics, 19(1), 42-61. https://doi.org/10.1177/17470161221131497
Sourov, I. H., Ahmed, F. A., Opu, M. T. I., Mutasim, A. K., Bashar, M. R., Tipu, R. S., Amin, M. A., & Islam, M. K. (2023). EEG-based preference classification for neuromarketing application. Computational Intelligence and Neuroscience, 2023, 4994751. https://doi.org/10.1155/2023/4994751
Tká?, M., & Verner, R. (2016). Artificial neural networks in business: Two decades of research. Applied Soft Computing, 38, 788-804.
https://doi.org/https://doi.org/10.1016/j.asoc.2015.09.040
Tveit, J., Aurlien, H., Plis, S., Calhoun, V. D., Tatum, W. O., Schomer, D. L., Arntsen, V., Cox, F., Fahoum, F., Gallentine, W. B., Gardella, E., Hahn, C. D., Husain, A. M., Kessler, S., Kural, M. A., Nascimento, F. A., Tankisi, H., Ulvin, L. B., Wennberg, R., & Beniczky, S. (2023). Automated interpretation of clinical electroencephalograms using artificial intelligence. JAMA Neurology, 80(8), 805-812. https://doi.org/10.1001/jamaneurol.2023.1645
Usman, S. M., Shah, S. M. A., Edo, O. C., & Emakhu, J. (2023, 8-9 March 2023). A deep learning model for classification of eeg signals for neuromarketing. 2023 International Conference on IT Innovation and Knowledge Discovery (ITIKD).
Vempati, R., & Sharma, L. D. (2023). A systematic review on automated human emotion recognition using electroencephalogram signals and artificial intelligence. Results in Engineering, 18, 101027. https://doi.org/https://doi.org/10.1016/j.rineng.2023.101027
Ghazvini, S. N., Nazari, E., Salleh, N. Z. M., & Baharun, R. (2024). The Role and Application of Artificial Intelligence in Neuromarketing Research Based on Electroencephalography. International Journal of Academic Research in Business and Social Sciences, 14(12), 1556–1567.
Copyright: © 2024 The Author(s)
Published by HRMARS (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode