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ABSTRACT 

In this paper, the results of seasonal modeling of Sokoto monthly average temperature have 
been obtained using seasonal autoregressive integrated moving average modeling approach. 
Based on this seasonal modeling analysis, we conclude that , the  best seasonal model among 
the models that are adequate to describe the seasonal dynamics for Sokoto city temperature is 
SARIMA (3,0,1)(4,1,0) 12, SARIMA (1,0,0)(0,1,1) 12 and SARIMA (4,0,2)(5,1,1) 12 models. These 
models are the only models that passed all the diagnostic tests and thus it can be used for 
forecasting at some future time.  

KEY WORDS: Seasonality, SARIMA, Identification, Estimation, and Diagnostics test. 
JEL: C2, C22 

1. INTRODUCTION  
The location of Sokoto in Nigeria is at Latitude 130 02 N and Longitude 050 15 E. Sokoto State is 
in the dry Sahel, surrounded by sandy Savannah and isolated hills. Sokoto is a city located in the 
extreme northwest of Nigeria. Sokoto as a whole is very hot area. The raining season is from 
June to October during which showers are a daily occurrence. From late October to February, 
during the cold season, the climate is dominated by the Harmattan wind blowing Sahara dust 
over the land. The dust dims the sunlight there by lowering temperatures significantly and also 
leading to the inconvenience of dust everywhere in houses.  
The purpose of univariate time series modeling is to provide a simple description of the basic 
features of a single time series in terms of its own past and errors of the process in the past. 
The emphasis is purely on making use of the past information in the time series for forecasting 
its future. In addition to producing forecasts, time series models also produce the distribution 
of future values conditional upon the past, and can thus be used to evaluate the likelihood of 
certain events.  
Seasonality is the systematic although not necessarily regular, intra-year movement caused by 
the changes of weather, the calendar, and timing of decisions, directly or indirectly through the 
production and consumption decisions made by the agents of the economy (Hylleberg, 1990). 
These decisions are influenced by endowments, the expectations and preferences of the 
agents, and the production techniques available in the economy. Such seasonal patterns can be 
observed for many macroeconomic time series like gross domestic product, unemployment, 
weather, industrial production or construction. Temperature is indispensable for sustaining life. 
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Even a brief rise and falling of it can cause a serious effect on human and his economic 
activities. However, the term seasonality is also used in a broader sense to characterize time 
series that show specific patterns that regularly recur within fixed time intervals (e.g. a year, a 
month or a week).  

 
1.2 SHORT TERM MEMORY MODELS AND SOME BASIC PROPERTIES 
The following models were especially suited for understanding short-memory processes that is 
processes for which there is little or no shock persistence. 
 AR(P) Processes (Autoregressive Process of Order p) 

The general expression for an  AR p process is  

 1 1 2 2 ...t t t p t p ty y y y E            (1.01) 

Where t  is a white noise with variance  

 
2 2

tE E       
Using the lag operator notation, this process can be written as  

 
 2

1 21 ... p

p t tL L L y E        
 (1.02) 

More compactly,  

   t tL y E    (1.03) 

where  

   2

1 21 ... p

pL L L L          

The pth order polynomial  L can be factorized as  

       1 21 1 ... 1 pL L L L        (1.04) 

For  AR p to be stationary in this factorization, the coefficients 1i  ,that is all the roots of 

the polynomial must lie outside the unit circle, meaning that the values 1

i
 must be greater 

than one in absolute value. This is the property of covariance stationarity of  AR p process. 

 
 
MA (q) Process 
The representation,

  
                                    1 1 2 2 ...t t t t q t qX c E E E E           

  (1.05) 

is a time series tX of order  q representation, where tE is a white noise with variance  

 
2 2

tE E       
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where  2~ 0,tE IND 
.
 

The lag notation of  MA q process (model) is: 

 
  2

1 21 ... q

qL L L L       
 (1.06) 

 
 

The ARMA Process 

The representation of a time series  tY of an ARMA  ,p q process is: 

 1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qY Y Y Y c E E E E                     (1.07) 

where  2~ 0,t IND    

In lag notation, (1.07)) can be written as: 

 
   2 2

1 2 1 21 ... 1 ...p q

p t q tL L L Y c L L L E              
 (1.08) 

or  

    t tL Y c L E    (1.09) 

where  

     2

1 21 ... p

pL L L L          

   2

1 21 ... q

qL L L L         

1) Remarks:    tL Y is called the AR component of the process    .t tY L  is the MA 

component of the process  tY . 

2) When    1, 0, ~tL thatis q Y MA q   . 

3) When    1, 0, ~tL thatis q Y AR p   . 

4)  L is called the AR characteristics polynomial of the AR component of  tY . 

5) Similarly  L is called the MA characteristics polynomial of the MA component of tY . 

6) p is the order of the AR component and q is the order of the MA component.  ,p q is 

the order of the ARMA process. In this case we write  ~ ,tY ARMA p q  to denote that 

the process  tY is an ARMA process whose AR order is p and whose MA order is q. 

 
An ARMA process is said to be invertible if it has an AR representation, while it is said to be 
covariance stationary if it has an MA representation, that is every AR process is invertible and 
every MA process is stationary. 
For ARMA process we normally impose the condition that they are covariance stationary. But 
most time series data are not stationary. This means that unless we can incorporate the 
concept of non-stationarity in time series we would not be able to achieve our objective to 
model such systems. This leads us to ARIMA process. 
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Invertibility and Covariance Stationarity of an ARMA Process 
Definition - (Invertible ARMA process): an ARMA process is said to be invertible if it has an AR 
representation.  
Definition – (covariance ARMA stationarity): an ARMA process is said to be covariance 
stationary if it has an MA representation. We note that every AR process is invertible and every 

MA process is covariance stationary. Suppose    ~ ,tY ARMA p q where 0p  and 0g  . Let 

 tY have the representation: 

 
   t tL Y c L E  

 (1.10) 

Suppose  1 L exists. Multiply (1.10) by  1 L . We have  

          1 1 1

t tL L Y L c L L E         (1.11) 

or 

  *

t tY c L E    

which is MA representation of  tY . Therefore the condition for  tY to be covariance 

stationary is if  1 L exists. However, this exist iff the roots of the polynomial  p x lie outside 

the unit circle. 

For invertibility, we multiply (1.10) by  1 L  . We have  

 
       1 1

t tL L Y L L E    
 (1.12) 

or 

   *

t tL Y c E     

However, for  1 L  to exist, all the roots of  L should lie outside the unit circle. 

 
ARIMA Process 
Most application time series are not stationary. And to model a time series, we normally 
impose the condition that they are covariance stationary. This means that unless we can 
incorporate the concept of non-stationarity in time series we would not be able to model such 
systems. This leads us to ARIMA processes. ARIMA denotes Autoregressive Integrated Moving 
Average. Or, an ARIMA process is an integrated ARMA process. Here is a class of non-stationary 
processes which becomes stationary after a finite number of differencing. For such process let d 
denote that number of terms the process needs to be differenced to become stationary. d is 
called the order of integration of the processes. When such derived stationary processes can be 

model as ARMA  ,p q , then we call the original process ARIMA  , ,p d q . It is a non stationary 

process we need to differentiate it d times to become stationary and once stationary, we can 

model it as ARMA  ,p q process. 
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Representation: 

An ARIMA  , ,p d q process  tY denoted by  ~ , ,tY ARIMA p d q has the representation: 

 
    1

d

p t q tL L Y c L E   
 (1.13) 

These polynomials are the same as defined in ARMA process. Because of the factor  1
d

L in 

(1.13) we call it ARIMA processes of difference order d. this is also known as unit root 
processes. 
ARIMA denotes Autoregressive Integrated Moving Average. Here is a class of non-stationary 

process which becomes stationary after a finite number of differencing. When d  is the finite 

number of differencing for the time series to be stationary, then d is called the order of 

integration of the processes, denoted by ARIMA  , ,p d q . 

 There are situations where an ARIMA process will not be enough to model, for example, the 
monthly average temperature of Sokoto, which   is having  seasonality in data(table: ) ,  in such 

situations SARIMA   , , , ,
s

p d q P D Q may be appropriate to model such series.  

 
2. SARIMA MODELLING      
The multiplicative seasonal autoregressive integrated moving average model, SARIMA is 
denoted by SARIMA ( , , )( , , )p d q P D Q s  (Box and Jenkins 1976), where p   denotes the number 

of autoregressive terms, q  denotes the number of moving average terms and d  denotes the 

number of times a series must be differenced to induce stationarity. P  Denotes the number of 
seasonal autoregressive components, Q  denotes the number of seasonal moving average 

terms and D  denotes the number of seasonal differences required to induce stationarity. The 
seasonal autoregressive integrated moving average model has the following representation:  

                   (1 ) (1 ) ( ) ( ) ( ) ( )d s D

s t s tL L L L X a L L e                                  (2.01) 

where: 
                a is a constant,  
              {et} is a sequence of uncorrelated normally distributed random variables  

                      with the same mean ( ) and the same variance ( 2 )  

               L is the lag operator defined by  k

t t kL X X    

              2

1 2( ) 1 ... q

qL L L L          

                  2

1 2( ) 1 ... p

pL L L L         

                 1 2

1 2( ) 1 ...s s Ps

s s PsL L L L       

                  1 2

1 2( ) 1 ...s s Qs

s s QsL L L L       . 

The selection of the appropriate seasonal ARIMA model for the data is achieved by an iterative 
procedure based on three steps (Box et al, 1994).   
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2.1 Model Identification 
The Model Identification stage enables us to select a subclass of the family of SARIMA models 
appropriate to represent a time series. This involves stationary transformation, regular 
differencing, seasonal differencing and the Unit root and Stationarity tests (ADF, KPSS and 
HYGY).  

Stationary transformations: Our task is to identify if the time series could have been generated 
by a stationary process. First, we use the time plot of the series to analyze if it is variance 
stationary. The series departs from this property when the dispersion of the data varies along 
time. In this case, the stationarity in variance is achieved by applying the appropriate Box- Cox 
transformation 
 

                               

1
0

( )

ln( ) 0

t

t

X

t XX




 









 


                                               

and as a result, we get the series ( )X  . 
 
In some cases, especially when variability increases with level, such series can be transformed 
to stabilize the variance before being modeled with the Univariate Box-Jenkins- SARIMA 
method. A common transformation involves taking the natural logarithms of the original series. 
The second part is the analysis of the stationarity in mean. The instruments are the time plot, 
the sample correlograms (ACF and PACF) and the tests for unit roots and stationarity. The path 
of a nonstationary series usually shows an upward or downward slope or jumps in the level 
whereas a stationary series moves around a unique level along time. The sample 
autocorrelations of stationary processes are consistent estimates of the corresponding 
population coefficients, so the sample correlograms of stationary processes go to zero for 
moderate lags.  

When the series shows nonstationary patterns, we should take first differences and analyze 

if ( )

tX   is stationary or not in a similar way. This process of taking successive differences will 

continue until a stationary time series is achieved. 

Regular differencing : To difference a data series, we define a new variable ( Wt )  which is the 

change in tZ  from one time period to the next; that is, 

                        1(1 )t t t tW L Z Z Z         ,        1,2,...,t n                                     (2.02)                              

This working series" tW   is called the first difference of te . If the first differences do not have a 

constant mean, we might try a new Wt , which will be the second differences of tZ , that is: 

                          1 1 2 1 2( ) ( ) 2 ,t t t t t t t tW Z Z Z Z Z Z Z            

Using the lag operator as shorthand (1-L) is the differencing operator since 1(1 ) t t tL Z Z Z    . 

Then, in general, 

                                                (1 )d

t tW L Z   
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is a d-th order regular difference. That is, d denotes the number of nonseasonal differences.  

Seasonal differencing: For seasonal models, seasonal differencing is often useful. For example, 

                             12

12(1 )t t t tW L Z Z Z                                                                 (2.03) 

is a first-order seasonal difference with period 12, as would be used for monthly data with 12 
observations per year. Rewriting (2.03) and using successive resubstitution (i.e., using 

12 12 24t t tW Z Z    )  gives  

                                         12t t tZ Z W   

                                             12 12t t tZ W W     

                                             36 24 12t t t tZ W W W       

and so on. This is a kind of “seasonal integration “, In general 

                                         (1 )s D

t tW L Z   

is a Dth order seasonal difference with period S where D denotes the number of seasonal 
differences. 

 

Unit Roots and Stationarity: Because the order of integration of a time series is of great 
important for the analysis, a number of statistical tests have been developed for investigating 
it. In this, case, we have to test the data, to know the level or if there is any need for seasonal 
and nonseasonal differencing before modeling the data. The tests are: 

(i) Augmented Dickey-Fuller (ADF) Test: This test was first introduced by Dickey and Fuller 
(1979) to test for the presence  of unit root(s). The regression model for the test is 
given as:  

                           

1
*

1

1

p

t t j t j t

j

X X X u 


 



                                          (2.04) 

          in this model the pair of hypothesis 0 : 0H           Versus          1 : 0H  <  

                H0  is rejected if the t-statistics is smaller than the relevant p-values (critical value).  
                 If  =0 (that is, under H0) the series Xt   has a unit root   and   is nonstationary,  

                 whereas it is regarded as stationary if the null hypothesis is rejected.   
(ii) KPSS Test 

                This test (KPSS) has been proposed by Kwiatkowski et al (1992) where the hypothesis  
                 that the Data generating process (DGP) is stationary is tested against a unit root. If  
                 there is no linear trend term (i.e. trend stationary). ), the Data  generating process is  
                 given by  

                       t t tX y z                                                                                  (2.05) 

                    where   1 1 ...t t p t p ty A y A y v                         2. . (0, )t vv i i d              

                    They proposed the following statistics:  

                     T-statistic
2

2 2
1

1
( )

ˆ

T
t

k

t

S
t

T  

   

                   Where 2

tS  is the partial sum of the residuals, 2̂
  is the long run variance. Accept   
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                    0H  when the t-statistics is less than the critical value, that is, tX  is   stationary.  

                     Reject  0H  for large values of kt (i.e. k rt c> ), tX  has a unit root. 

(iii) Seasonal Unit root (Hegy test) 
                 This test has been proposed by hylleberg et al (1990) to check for seasonal unit 

root.  
                      For monthly time series, Frances (1990) discussed the test for seasonal unit 

root  
                       based on the model 

 

                               12 1 1, 1 2 2, 1 3 3, 1 4 3, 2 5 4, 1t t t t t tX z z z z z                

                                            6 4, 2 7 5, 1 8 5, 2 9 6, 1t t t tz z z z           

                                             6 4, 2 7 5, 1 8 5, 2 9 6, 1t t t tz z z z           

                                             10 6, 2 11 7, 1 12 7, 2t t tz z z       *

121

p

j t j tj
X u 

     

                     The number of lagged seasonal differences 
4 t jX   has to be chosen before the 

                     HEGY test can be performed. The process tX  has a regular (zero frequency unit  

                      root if 1 0   and it has seasonal unit root if any one of the other i  (i = 2,3,…,12)  

                      is zero. If all the i (i =1,…,12) are zero, then a stationary model for the monthly  

                      seasonal differences of the series is suitable . 
 
2.2 Model Estimation  
The parameters of the selected SARIMA (p, d, q)(P, D, Q) model can be estimated consistently 
by least-squares or by maximum likelihood estimation methods. Both estimation procedures 

are based on the computation of the innovations t  from the values of the stationary variable. 

2.3 Model Diagnostic test 
Once we have identified and estimated the SARIMA models, we assess the adequacy of the 
selected models to the data. This model diagnostic checking step involves both parameter and 
residual analysis by the use of ACF and PACF residuals plot, Ljung-Box Statistics and Normality 
test. 
If the univeriate modeling procedure is utilized for forecasting purposes then this step can also 
form an important part of the diagnostic checking.  This involves short forecast, middle forecast 
and long forecast statistics of the fitted models. 

3.0  Modeling       
The focus is to use the seasonal autoregressive integrated moving average (SARIMA) techniques 
based on Box and Jenkins (1994) methodology to build  models (Modelling) for the monthly 
average temperature of Sokoto city using data set for the period January 1995 to December 
2003. The SARIMA model is then used to perform an out of sample forecast for January 2004 to 
December 2004. The data sets were obtained from the Metrological department, Sokoto State 
International Air port.   
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Fig 3.01: Time plot of monthly average temperature (X) 

 for Sokoto from 1995:1 to 2003:12.   

 Figure 3.02: ACF and PACF for the time series,  

1995:1 to 2003:12.          

 Fig3.03: Range-Mean plot for Sokoto monthly average  

temperature, 1995:1 to 2003:12    

Fig 3.04:  Sample periodogram of Sokoto temperature,  

1995:1 to 2003:12  

3.1 Identification of the seasonal models. 
Time plot 

Fig 4.01 displays the time plot of the monthly average temperature series. A noticeable feature 
is the persistent recurrence of the pattern variability in all the periods, suggesting that the series 
has a pronounced seasonal pattern and hence is not stationary. In this case a formal test has to 
be carried out to test the presence or absence of seasonal unit root. 
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ACF and PACF 

Consider the ACF plot of Fig 4.02 in which the highest spikes always occur at lags  12, 24, 36, 
etc., this indicates that the series is seasonal with period 12. Also the series is highly 
autocorrelated and the correlation is very persistent. Since the autocorrelation at seasonal 
periods are positive we expected that the fitted model should have seasonal autoregressive 
(SAR) component. On the other hand the PACF shows that the model is a mixed model with 
both AR and MA components. 
Range-mean plot                           
We observe in the Fig 4.03 that the ranges are not increasing or do not tend to increase with 
the means. This means that there is no strong positive relationship between the sample mean 
and the sample variances for each period in the data. Finally, this indicates that there is no need 
for a log transformation.  

Spectral analysis:  

Spectral analysis is a useful frequency domain tool for detecting the existence of periodicity in a 
time series (Hamilton, 1994). This can be achieved by plotting the periodogram or spectral 
density of the series against either period or the frequency.  
It can be seen in Fig 4.04 that there is a large-scale component at a frequency of nine cycles, 
precisely. In this case, there were 108 samples (9 years of data). Therefore, a frequency of nine 
is nine cycles every 108 months, or one cycles every 12 months (108/9). There is also another 
spike at a frequency of 18, which corresponds to a period of 6 months (108/18). The frequency 
spectrum clearly shows that there are both seasonal (12 month) and monthly (6 months) cycles 
in the sokoto temperature data .the height of the spikes tell you how much each spectral 
component contribute to the original data. 
Unit root test 
We use two methods to determine the order of non-seasonal integration of the series: ADF 
(Augmented Dickey-Fuller) and KPSS tests. The ADF test checks the null hypothesis of unit root 
against the alternative of stationarity for the data generating process. The KPSS test checks the 
null hypothesis of stationarity against the alternative of a unit root for the data generating 
process. The results for the ADF and KPSS tests are in Table 4.01. At the 5% significant level, the 
ADF test rejects the null hypothesis of unit root and KPSS test does not rejects the null 
hypothesis of stationarity. Therefore conclusively the time series does not required non-
seasonal differencing.   
HYGY Test 
The HYGY statistic tests the null hypothesis there is no seasonal unit root against the alternative 
seasonal unit root. The p-value in table 4.01 is 0.006. Hence the null hypothesis of no seasonal 
is rejected at 5% significance level, confirming our expectation that the time series is seasonally 
integrated. 
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Table 3.01: Summary results for different tests. 

TEST t-statistics p-values 

ADF -4.6388 0.00011 
KPSS 0.0189 0.146 
HYGY for levels 0.5567 0.006 
HYGY test for seasonal difference 0.0756 0.405 

 
Penalty function criteria  
To specified the range of values of the SARIMA parameters ( , , )( , , )p d q P D Q s . The values of 

three of the parameters are known now: s  =12, d = 0, and D = 1; we have shown that the 
order of nonseasonal integration is zero; the order of seasonal integration is 1 and the periods 
of seasonality 12. 
For the parameter space p = 0,1,2,…,5; q  = 0,1,2,…,4; P  = 0,1,2,…,6; Q  =0,1,2,…,4, the most 

parsimonious models given by the two information criteria AIC and BIC using ASTSA are:    
1. SARIMA (1, 0, 0)(0,1,1) 12 

2.  SARIMA (2, 0, 1)(2,1,0) 12 
3.  SARIMA (2, 0, 2)(3,1,2) 12 
4.  SARIMA (3, 0, 1)(4,1,0) 12 
5. SARIMA (4, 0, 2)(5,1,1) 12 
 
An extension of the search to any wilder parameter space produced the same results. This 
confirms the optimality of the five models above.  
 
3.2 Estimation of Models  
 The parameter estimation results show that all the models parameters are significant by using 
their standard error with their P – values. The Table below represents the estimates:   
     Table 3.02: Models Estimations 

Model Predictor Coefficient Std. Error T- ratio P- value 

SARIMA 
(1,0,0)(0,1,1) 

AR(1) 0.24 0.096 2.53 0.13 

SMA(1) 0.78 0.073 10.72 0.000 

Model Predictor Coefficient Std. Error T- ratio P- value 

SARIMA 

(2,0,1)(2,1,0) 

AR(1) -0.3372 0.1880 -1.7938 0.077 

AR(2) 0.112 0.1112 0.1006 0.920 

MA(1) -0.4813 0.2029 -2.3717 0.021 

SAR(1) -0.5769 0.0990 -5.8273 0.000 

SAR(2) -0.4452 0.0933 -4.7695 0.000 
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Model Predictor Coefficient Std. Error T- ratio P- value 

SARIMA 

(2,0,2)(3,1,2) 

AR(1) 0.1303 0.0029 45.31 0.000 

AR(2) 0.3675 0.0032 115.56 0.000 

MA(1) 0.2831 0.0037 76.65 0.000 

MA(2) 0.9764 0.0037 263.99 0.000 

SAR(1) 0.1137 0.0037 30.65 0.000 

SAR(2) -0.5147 0.0036 -141.43 0.000 

SAR(3) -0.0298 0.0032 -9.42 0.000 

SMA(1) 0.9683 0.0037 260.66 0.000 

SMA(2) -0.2426 0.0037 -65.30 0.000 

Model Predictor Coefficient Std. Error T- ratio P- value 

SARIMA 
(4,0,2)(5,1,1) 

AR(1) 0.95 0.0017 546.9 0.000 

AR(2) -0.38 0.0015 -248.6 0.000 

AR(3) 0.34 0.0017 198.3 0.000 

AR(4) -0.22 0.0015 -148.6 0.000 

MA(1) -0.36 0.0017 -208.8 0.000 

MA(2) 1.33 0.0017 774.3 0.000 

SAR(1) -0.06 0.0017 -38.1 0.000 

SAR(2) -0.52 0.0015 -350.7 0.000 

SAR(3) -0.52 0.0016 -324.3 0.000 

SAR(4) -0.28 0.0017 -162.9 0.000 

SAR(5) -0.17 0.0017 -98.3 0.000 

SMA(1) 0.96 0.0017 551.9 0.000 

Model Predictor Coefficient Std. Error T- ratio P- value 

SARIMA AR(1) 0.03 0.0068 3.9 0.000 
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(3,0,1)(4,1,0) AR(2) -0.28 0.0097 -29.3 0.000 

AR(3) 0.04 0.0093 4.3 0.000 

MA(1) -1.18 0.0097 -122.5 0.000 

SAR(1) -0.38 0.0082 -46.7 0.000 

SAR(2) -0.65 0.0089 -73.0 0.000 

SAR(3) -0.61 0.0095 -64.7 0.000 

SAR(4) -0.31 0.0095 -32.3 0.000 

 
3.3 Diagnostic checking 
We test whether or not the residuals are generated by a white noise process by using (i) the 
ACF and PACF plots and using the Ljung- Box test to check whether or not the residuals are 
uncorrelated, (ii) normal probability plots and the Anderson-Darling test to test the normality of 
the residuals. 
 

                                                      
Figure 3.05: Sample ACF and PACF 0f ARIMA (1,0,0)(0,1,1) residuals 
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Figure 3.06: Sample ACF and PACF of ARIMA (2,0,0)(2,1,0) residuals* 

 
Figure 3.07: Sample ACF and PACF of ARIMA (2, 0,2)(3,1,2) residuals* 

 
Figure 3.08: Sample ACF and PACF of ARIMA (3, 0,1)(4,1,0) residuals  
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Figure 3.09: Sample ACF and PACF of ARIMA (4, 0,2)(5,1,1) residuals 
 
Table 3.03 shows the results for Ljung-Box test, .The tests reveals that only the residuals for the 
models SARIMA (2,0,1)(2,1,0)12 and SARIMA (2,0,2)(3,1,2)12 are not uncorrelated, using the 5% 
significance level; these two cases are identified by the symbol *.                                                                                      
 
TABLE 3.03: Ljung-Box statistics (to test the residual autocorrelation as a set rather than  
                     individuals 

Seasonal ARIMA Models Lung-Box test 

(1 ; )k p    

P value 

 

SARIMA (1,0,0)(0,1,1) 

 

SARIMA(2,0,0)(2,1,0) 

 

SARIMA(2,0,2)(3,1,2) 

 

SARIMA(3,0,1)(4,1,0) 

 

SARIMA(4,0,2)(5,1,1) 

 

QLB(30)=22.4286 

 

QLB(30)=27.3162 

 

QLB(15)=14.6718 

 

QLB(15)=9.4458 

 

QLB(15)=11.7841 

 

41.3 

 

18.9 

 

12.6 

 

14.1 

 

12.6 

 

0.0504 

 

0.8406* 

 

0.0498* 

 

0.0424 

 

0.006 

 
The results for the normality test are in Table 3.04.The residuals of the entire five models pass 
the normality test. 
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Table 3.04: Results for the normal probability plot and the Anderson-Darling test 

Models Normal plot value P-Value (base on Anderson-
Darling) 

(1,0,0)(0,1,1) 0.98800 0.057 
(2,0,0)(2,1,0) 0.99171 0.196 
(2,0,2)(3,1,2) 0.99602 0.865 
(3,0,1)(4,1,0) 0.98416 0.344 
(4,0,2)(5,1,1) 0.99170 0.870 

 
On the basis of the results of the diagnostic checking the following three models were selected: 
1. SARIMA (1,0,0)(0,1,1)12 
2 SARIMA (3,0,1)(4,1,0)12 
3 SARIMA (4,0,2)(5,1,1)12 
 
4. Conclusion  
This paper has considered the seasonal autoregressive integrated moving average (SARIMA) 
modeling of Sokoto monthly average temperature. Five seasonal models were chosen, by using 
model selection criteria. Only three models have passed the diagnostic test while the rest failed 
one or more of the tests.     
Therefore conclusively, the  best seasonal model among the models that are adequate to 
describe the seasonal dynamics for Sokoto city temperature is SARIMA (3,0,1)(4,1,0) 12, 
SARIMA (1,0,0)(0,1,1) 12 and SARIMA (4,0,2)(5,1,1) 12 models. 
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