

Classification of Cities of Isfahan Province on the Basis of Indicators of Electronic Tourism

Zohreh Kabiri

MA Student of Geography and Tourism Planning, Islamic Azad University, Najafabad Branch, Najafabad, Iran

Reza Mokhtari Malekabadi

Department of Geography and Urban Planning, University of Payam Noor, Isfahan Unit, Isfahan, Iran

DOI: 10.6007/IJARBSS/v4-i9/1126 URL: <u>http://dx.doi.org/10.6007/IJARBSS/v4-i9/1126</u>

Abstract

Nowadays, electronic-tourism is considered as one of the biggest economic sectors in most countries. Our country also must take some steps to develop it.

One of the basic actions of electronic tourism development is classification of electronictourism infrastructure in different zones of a province and a balanced distribution of infrastructures and adjusted inequality in different regions.

The study area is the vast province of Isfahan in central Iran, including 23 of the cities and is the leading province in the field of information technology.

In addition to the study of electronic-tourism and information technology and its spatial distribution among the different cities of the Isfahan province, this study is used to classify and level these cities based on the electronic-tourism indicators including infrastructures of information technology using TOPSIS model So, realizing the infrastructures and classification them within the mentioned regions helps to have a better management on tourists and develop electronic tourism.

The research method adopted here is descriptive - analytical and survey. TOPSIS model and SPSS software were used for analyzing the data. Preliminary results indicate that referring the considered criteria for leveling the cities ,some cities such as Isfahan, Shahin Shahr and Khomeini Shahr, are in first to third grade, respectively in electronic –tourism indicators. Fereidoonshahr and Semirom also have been graded as last ones.

Keywords: Classification, E-tourism, Information technology, TOPSIS, Isfahan

1. Introduction

1.1. Statement of the Problem

Tourism is nowadays regarded as one of the most important and dynamic activities in the world, so the number of foreign and domestic tourists and the income obtained through it are

continuously increasing across the world. Many countries ever-increasingly know that they should improve their economic status and try to find new ways. One of these methods that has become very important during the two recent decades and has attracted the attention of most countries is E-tourism.

Although Iran is among the five superior countries in the world due to climatic and biological diversity and is among the ten superior countries in historical and cultural terms, the statistics show low status of tourism industry in this country and its one percent share in the global tourism portfolio. Isfahan province is not exceptional too. Also, E-tourism is not so advanced in Iran at present which is due to infrastructural problems in the field of information technology, inaccessibility of many people to the internet and low number of internet users than other countries. Therefore, given to the inappropriate status of Iran as well as Isfahan province in tourism industry, it seems that development of E-tourism and the related infrastructures can compensate for the existing gap to some extent.

Another problem about tourism and especially E-tourism in Iran including Isfahan province is lack of balance in spatial organization and lack of hierarchy based on interactive relationship among tourism areas. Classification of tourism areas is a measure to determine the centrality and also the required infrastructures and modify inequality among the areas (Hekmatnia & Musavi, 2007: 207). Developing communicative and information infrastructures will add tourists' willingness towards destinations.

Isfahan province with an extent equal to 107018 square kilometers has 23 cities that have obvious differences in terms of E-tourism indexes including use of the telephone and mobile phone, internet connection speed, use of the internet, degree of optical fibers lines, use of the internet cafe and offices of communication services, etc. This province has a prominent status than other provinces in terms of geographical situation and especially accessibility given that it is located at the center of Iran. Despite various cultural, historical, religious and eco-tourism attractions, this province does not have a competent status in the world in terms of incomes obtained from tourism. The present study explores E-tourism and information technology in tourism and its spatial distribution among the cities in Isfahan province and classifies the cities based on E-tourism indexes. Thus, efficient actions can be taken to reach the desired status if the current status is recognized.

1.2. Significance of the Study

Iran's economy relies on oil incomes and oil is a fossil energy that is exhaustible. Now, oil industry cannot compete with industries of developed countries and there is no suitable possibility to replace oil in other economic sectors at least in short-term.

One of the income resources given to spatial status and factors of attracting tourists such as natural perspectives, historical monuments, climatic diversity, and etc. is tourism. Sustainable and holistic development can be achieved via a scientific and theoretical background and evaluation of positive and negative effects, planning and proper management in tourism activity.

Information technology has changed the practical methods in all organizations especially in tourism industry in recent years. The fact that 66% of internet users have tendency towards E-tourism is an evidence to deal with an issue that is the undeniable necessity of the third millennium and it requires basic behavioral changes for progress and offering better services.

Today, E-tourism is one of the biggest economic sectors in many countries. What is important in E-tourism is the possibility to introduce tourism potentials of a country, city or region virtually to people and tourists across the world by means of modern tools. Virtual tourism is especially important for developing or less-developed countries that do not have good tourism infrastructures. Therefore, the essential infrastructures should be developed to expand this type of tourism.

Isfahan province has been one of the important poles of tourism in Iran which has more than 300 historical, cultural and natural attractions and is pioneer in the field of information technology that can enjoy the economic and cultural achievements of E-tourism. E-tourism development in Isfahan province and exploiting its positive effects have not been realized yet in cities of this province because of different t reasons such as imbalance in development of information technology infrastructures. Classification of different areas of a province, balanced distribution of infrastructures, and modifying inequality in various areas are the basic actions for tourism development. The number of tourists, hence, can be increased considerably by identification of the infrastructures and classification of them in the areas to develop E-tourism via investment and proper planning.

1.3. Purposes of the Study

1. Exploring the existing infrastructures of E-tourism in cities of Isfahan province and classification of them

2. Analytical-comparative exploration of cities of Isfahan province in terms of electronic literacy and degree of believing in E-tourism

3. Offering strategies and suggestions to develop E-tourism in cities of Isfahan province

1.4. Hypotheses

1. It seems that central cities of Isfahan province have a better status in terms of E-tourism indexes.

2. It seems that cities with higher tourism and eco-tourism potential have a better status in terms of E-tourism indexes.

3. It seems that there is a positive and significant relationship between citizens' electronic literacy and E-tourism development.

1.5. Methodology

This study was carried out using descriptive-analytical method. In order to achieve the purposes of the study, the mixed method (survey and descriptive-analytical) was first used. The required information and statistics about the infrastructures and E-tourism indexes were collected from different organizations across the cities under study. Then, they were classified via TOPSIS model. The hypotheses were tested by means of inquiry and statistical tests. The statistical population included citizens in Isfahan province based on the census in 2012 that were equal to 4,879,312. The sample size was obtained equal to 384 based on Cochran formula. Sample size of each city was determined via weighting method and the questionnaires were distributed randomly.

2. Definitions and Concepts

2.1 Information Technology

Information technology has been defined by the Information Technology Association of America (ITAA) as follows: "it studies, designs, develops, implements, supports, and manages computer-based information systems especially software and hardware programs" (Proctor, 2011: Introduction).

2.2 E-tourism

E-tourism is the technique of combining electronic businesses and information technology in preparation, arrangement and supporting methods and tools to offer higher quality services with lower costs to tourists. Indeed, E-tourism is electronic offering of all services which were used by tourists traditionally in the past as well as services which have become possible via information technology (Sarfarazi, 2011: 17). Papoli Yazdi believes that E-tourism can be defined as follows: "E-tourism is using of modern technologies especially information and communications technology in two aspects of tourism supply and demand in which fields of marketing and tourism perspective of destinations are provided besides the required services are offered (Papoli & Saghaee, 2010: 140-141).

2.3. E-tourism System

E-tourism includes offering the required services by tourists either foreign or domestic tourists through information technology and electronic tools in doing tourism activities from planning to implementation. E-tourism is the common area between traditional tourism, professional affairs such as management, marketing, financial and information technology. It is the connection point between traditional tourism and information technology (Pourfaraj, 2012: 52).

2.4. Virtual Tourism

Buhalis, one of the popular characters in this field, has defined virtual tourism in this way: "virtual tourism means digitalization of all processes and value chains in tourism, traveling, hospitalization and food industries. It includes E-commerce at tactical level and uses information and communication technologies to maximize efficiency and effect of the tourism organization" (Buhalis, 2004: 238).

2.5. Classification of Tourism Destinations

Use of quantitative methods and measures to classify settlements in spatial system of regions not only makes the difference among the settlements clear but also it is a measure to determine centrality as well as different types of required services and modification of inequality among the settlements (Hekmatnia & Musavi, 2007: 207).

Classification of tourism destinations can be regarded as a part of spatial planning process in a region, since spatial planning aims to recognize the resources and how to exploit them along with predicting the future status of desired settlement of humans and their performance in the nature to provide reasonable, balanced and desired economic growth in the country and avoid imbalance and destructive and negative reflections in the space (Masumi Eshkevari, 2009: 18).

3. Data Analysis

3.1. Classification of Cities Using TOPSIS Technique

TOPSIS technique is the most helpful multiple attribute decision making method for investigation of the problems in the real world that was proposed by Huang and Youn for the first time (Shamaei, 2012: 30). The required data and statistics in this survey were extracted from statistics of the Telecommunication Company and Communications Regulatory Authority in 2013. Then weighting method based on population of each city was used to determine the indexes in each city. The intended measures for classification as infrastructures related to E-tourism are shown in Table 1. This is referred to as decision-making matrix of indexes. There are nine indexes including fixed telephone line penetration rate and mobile phone penetration rate for every 100 persons (according to the contract by the Telecommunication Company), ADSL internet penetration rate for every 1000 persons, WiMax internet penetration rate for every 10000 persons, the number of public telephone for every 10000 persons, the number of public telephone for every 10000 persons, the number of urban communication services for every 100000 persons, the number of offices of urban communication services for every 100000 persons, the number of rural areas with telephone connection for each 100 villages.

			6 matrix of n						
City	Fixed	Mobile	ADSL	WiMax	The	The	The number	The	Rural
	telepho	phone	internet	internet	number	number	of offices of	numb	areas
	ne line	penetrat	penetratio	penetratio	of public	of	communicat	er of	with
	penetrat	ion rate	n rate	n rate	telepho	Electron	ion services	rural	telepho
	ion rate				nes	ic	(urban)	ICT	ne
						counter		offices	connecti
						govern			on
						ment			
						offices			
Aran o	20.22	77 1 2	26.0791	0	35.0070	5.13299	7 207567	31.111	45.4545
Bidgol	50.55	27.15	50.9761	0	3	6	1.20/50/	11	5
Ardestan	62.02	10 0		0	63.7604	12.0758	10 10107	20.496	72.5663
	02.92	45.0	24.05507	0	2	4	16.40197	89	7
Isfahan	17 69	120.01	E2 04024	141 9562	דו כב בכ	8.04904	0 745466	3.9868	AE 4140
	47.00	129.91	52.04924	141.6505	27.7547	1	0.745400	92	45.4142
Borkhar	25.74	21 E0	7 7 11E17	0	17.5337	11.9339	12 40102	11.111	21 25
	55.74	21.56	25.11515	0	1	4	12.49102	11	51.25
Tiran and	40.21	22.0	17 40042	0	36.7865	5.79315	7 205074	59.677	47.6190
Karvan	40.21	32.9	17.40843	0	4	5	7.285974	42	5
Chadegan	20.2	10.20	26 75152	0	37.4167	8.83860	14 01140	26.984	69.5652
	29.2	19.29	20.75152	0	7	7	14.01149	13	2
Khomeini	22.00		22.04022	27 41 (20	17.9059	6.41788	0 20424	120	64.2857
Shahr	33.06	31.57	23.04022	37.41629	1	8	8.29424	120	1

Table 1. Decision-making matrix of indexes in cities

ISSN: 2222-6990

Khansar					57 3666	6 16846			47 9166
Rhansai	46.82	173.62	46.2943	0	8	0.10040	9.37295	50	47.5100 7
Khur and					47 2095	11 2403		36 666	36 7088
Riabanak	71.22	28.19	64.91317	0	۲7.20 <i>3</i> 3 8	11.2403 8	7.301935	67	50.7000 6
Dehaghan					32 7172	14 3496		47 826	30 3571
Denaghan	40.83	33.26	44.91448	0	5	1 1.3 130 7	31.5799	09	4
Semirom					21.2154			12.711	46.1538
	35.69	29.69	15.31201	0	3	4.61205	5.780514	86	5
Shahin									
Shahr and	41.79	42.1	6.384039	133.7342	38.7111	9.66508	10.92067	19.047	39.4557
Meimeh					9			62	8
Shahreza	14.64	co =	42,00000	4 070767	25 0000	10.0297	42.0722	26.666	50.5494
	41.64	69.5	42.89392	4.078767	25.8099	5	13.0732	67	5
Fereydan	20.45	24.00		0	33.1063	5.01611	10 20105	34.246	67.2727
	29.45	34.09	37.54562	0	5	4	10.30105	58	3
Fereyduns	22.45		10 57250	0	27 2027	2 60965	F 160920	17.647	го
hahr	33.15	25.05	18.57359	0	37.3037	2.00805	5.109829	06	50
Falavarjan	22 52	27 5	14 20688	0	14.2906	6 07252	11 70802	50	65.3061
	55.55	27.5	14.30088	0	9	0.07255	11.70892	50	2
Kashan	16.86	11 86	28 33278	1/ 5962/	27 3061	5 25712	6 807213	38.679	47.6470
	40.00	41.00	20.33270	14.55024	27.3001	5.25712	0.007213	25	6
Golpayega	45 57	39.68	36 69452	0	31.2074	8 00192	11 35025	24.242	73.8095
n	+3.57	55.00	30.05432	0	9	0.00152	11.55025	42	2
Lenjan	36 97	46 74	33 01286	0	23.3256	5 27362	10 85121	42.553	52.5252
	50.57	+0.7 +	55.01200	0	3	5.27502	10.03121	19	5
Mobarakeh	39.25	38.58	29.15511	0	23.2794	10.4548	12,18218	33.333	45.9677
	00120	50.50	20120011	•	8	6	12.10210	33	4
Naeen	53.56	193.7	44.62011	0	56.9897	10.5050	10.38673	7.0270	60.1246
	55150	1000		•	8	3	10.00070	27	1
Najaf Abad	37.59	52.93	19.68111	3.89626	17.2168	7.99232	7.239688	44.444	51.25
					1	7		44	
Natanz	102.48	47.59	33.94967	0	74.1021	9.46992	14.20606	37.313	68.5393
				Ũ	3	1		43	3

Source: Communications Regulatory Authority and Telecommunication Company 2013; Statistical yearbook of Isfahan province in 2013 and calculations of the researcher

TOPSIS technique

In this technique, the distance between an alternative with the positive ideal alternative and also the negative ideal alternative is considered. It means that the selected alternative should have the least distance with the positive ideal solution and at the same time has the highest distance with the negative ideal solution.

- Primary matrix: it is the decision-making matrix.
- Crating the normalized matrix (ND) based on relation (1): (Rostami, 2007: 43)

Thus, each element of the assumed decision-making matrix is divided by the norm of *j*th column (in lieu of xj index). In this way, all columns of the assumed matrix have similar length (from the correspondent vector) and it will be easy to compare them totally. In this method, the decision-making matrix is first changed into a normalized matrix (ND) via the following formula:

$$n_{ij} = \frac{r_{ij}}{\sqrt{\sum_{i=1}^{m} r_{ij}^2}}$$
(1)

• Creating Pii matrix based on relation (2): (Shamaei 2012: 31)

$$Pij = \frac{r_{ij}}{\sum_{i=1}^{m} r_{ij}}$$
(2)

that each value is divided by the mean of *i*th column (in lieu of positive aspect for all indexes).

Calculation of Eij, Dij, and Wij

Calculating Ej based on relation (3):

$$Ej = k \sum_{i=1}^{m} Pij \times lnPij$$
, $k = \frac{1}{\ln m}$ (3)

Calculating Dj based on relation (4): Dj = 1 - Ej

Calculating Wi based on relation (5): Wj = $\frac{d_j}{\sum d_j}$

Creating normalized weighted matrix (D):

Creating normalized weighted matrix based on relation (6) (ibid., 33) $D = ND \times WN$

Calculation of Di and CLi and classification of cities:

In this step, positive ideal solution $(^{A^+})$ and negative ideal solution $(^{A^-})$ are obtained as follows:

Positive ideal solution: $A^+ = \{(max_i \ V_{ij} | j \in J), (min_i \ V_{ij} | j \in J') | i = 1, 2, ..., m\}$ $\{V_1^+, V_2^+, \dots, V_i^+, \dots, V_n^+\}$ Negative ideal solution: $A^{-} = \{ (\min_{i} V_{ij} | j \in J), (\max_{i} V_{ij} | j \in J') | i = 1, 2, ..., m \}$ $\{V_1^-, V_2^-, \dots, V_i^-, \dots, V_n^-\}$ (8)

So that:

 $J = \{j = 1, 2, ..., n | j \text{ s related to the desired indexes} \}$ J'= {i= 1, 2, ..., n *j* related to the desired indexes}

Now, distances between each alternative and the ideal alternatives are calculated using Euclidean method:

 $= \left\{ \sum_{j=1}^{n} (V_{ij} - V_{j}^{+})^{2} \right\}^{0.5}$ (9) i= 1, 2...m; the distance between *i*th alternative and the positive alternative= d_i^+ = $\left\{\sum_{j=1}^n (V_{ij} - V_j^-)^2\right\}^{0.5}$

(10) i= 1, 2...m; the distance between *i*th alternative and the negative

(6)

alternative= d_i^-

In the next step, relative closeness of Ai to the ideal solution is calculated as follows:

$$cl_{i+} = \frac{a_{i-}}{d_{i+}+d_{i-}}$$
 $0 \le cl_{i+} \le 1$

As it is shown in relation (9), if $Ai = A^+$, then $d_i^+=0$. Therefore, $cl_{i+}=1$ and if $Ai = A^-$, then $d_i^-=0$ and $cl_{i+}=0$. As a result, whatever Ai is closer to the ideal solution (A^+) , cl_{i+} will be

closer to one and whatever Ai is closer to the negative ideal alternative ($^{A^{-}}$), $^{cl_{i+}}$ will be closer

to zero. Thus, the existing alternatives can be classified in descending order of Cl_{i+} (Asgharpour, 2010: 261-262).

According to the results of TOPSIS model, some cities such as Isfahan, Shahin Shahr and Khomeini Shahr obtained the superior ranks in terms of E-tourism development indexes. (TOPSIS tables are not presented here because of their high volume and classification of cities is shown in Table 2).

3.2. Information literacy and degree of believing in E-tourism in Isfahan province

There are two types of questions in the questionnaire including 1) measuring electronic literacy and 2) degree of believing in E-tourism. The information in the questionnaires was extracted by means of SPSS and Excel software to determine weight of each city.

Based on the obtained results and according to Table 2, Shahin Shahr has the highest mean with the weight equal to 3.11 and Borkhar has the lowest mean of electronic citizen indexes with the weight equal to 2.12. Also, Isfahan ranked third after Kashan. The difference among cities is not so high in this regard. Similarly, 36.06% of citizens were at a low level in terms of electronic literacy indexes; 24.59% at the moderate level and 36.35% at the high level across Isfahan. Only 39% of citizens in Isfahan have low electronic literacy and the other 61% have moderate and high electronic literacy. Therefore, status of electronic literacy across Isfahan province is desirable. According to Table 3, using credit cards achieved the highest rank among the indexes of electronic citizen in Isfahan province after telephone and mobile phone. This shows people are interested in using electronic monetary services.

Table 2. Weight of electronic literacy and believing in E-tourism separately in cities (extracted from the questionnaires)

City	Weight	of	Weight o	f	Classification of	Classification based
	believing in	E-	electronic		electronic	on E-tourism indexes
	tourism		literacy		literacy	(TOPSIS)
Aran o Bidgol	3.85		2.58		17	19
Ardestan	3.29		2.88		9	15
Isfahan	3.65		3.03		3	1
Borkhar	3.31		2.12		23	21
Tiran and	3.72		2.40		10	11
Karvan			2.49		19	
Chadegan	3.24		2.18		22	20
Khomeini Shahr	3.27		3.01		5	3
Khansar	3.55		2.69		16	6
Khur and	4.06		2.82		11	12

Biabanak				
Dehaghan	3.65	2.94	6	7
Semirom	3.20	2.26	20	23
Shahin Shahr and Meimeh	3.23	3.11	1	2
Shahreza	4.31	2.86	10	8
Fereydan	3.46	2.54	18	17
Fereydunshahr	3.90	2.22	21	22
Falavarjan	3.98	2.74	15	14
Kashan	3.16	3.10	2	4
Golpayegan	3.66	3.02	4	18
Lenjan	3.65	2.77	14	13
Mobarakeh	3.10	2.79	13	16
Naeen	3.88	2.90	8	5
Najaf Abad	3.31	2.93	7	9
Natanz	3.88	2.80	12	10

Source: calculations of the researcher

Table 3. Description of electronic literacy information based on the data of questionnaire across Isfahan province

Number	Questions	Very high	High	Mod erate	Low	Very low	Mean of weights	Rank
1	How much do you use telephone, pager and mobile phone in a day?	160	152	59	13	-	4.2	1
2	How much do you use computer in a day?	85	100	104	57	38	3.36	4
3	How much do you use the internet in a day?	96	75	128	33	52	3.34	5
4	How much do you use WiMax and ADSL internet?	76	98	114	32	64	3.23	6
5	How much do you use SMS in a day?	96	108	97	51	32	3.48	3
6	How much do you use credit cards?	82	142	106	35	19	3.61	2
7	How much do you use electronic networks of banks and financial institutions?	18	32	84	110	140	2.16	16
8	How much do you have electronic or virtual purchase?	19	51	73	78	163	2.18	15
9	Spending your leisure time via working with the internet	82	60	119	53	70	3.08	9
10	Elimination of scientific, research and educational needs via internet	69	126	71	49	69	3.20	7
11	How much do you use the information	34	35	111	93	111	2.45	13

	offered by tourism agencies via internet?							
12	How much do you use offices of electronic	4	52	83	131	114	2.22	14
	services of urban organizations?							
13	How much do you use the offices of	18	82	103	98	83	2.62	11
	communication services, Electronic counter							
	government offices and internet cafes?							
14	How much do you use virtual cultural	58	50	105	40	131	2.65	10
	spaces (chat rooms, facebook, weblog,							
	digital library, virtual cinema, museum,							
	etc)?							
15	How much do you study the news online?	73	84	101	66	60	3.11	8
16	How much do you use online websites to	44	53	87	84	116	2.54	12
	recognize the intended area for traveling?							
17	How much do you use panorama (three	34	25	60	86	179	2.09	17
	dimensional) pictures to recognize an area							
	before traveling?							
	Percent	16.0	20.3	24.59	16.99	22.07		
		5	0					

Based on the obtained results and according to Table 2, citizens in Shahreza have the highest belief in E-tourism with weighted mean equal to 4.31 while the citizens in Mobarakeh have the lowest belief in E-tourism with weighted mean equal to 3.10. Also, the results reveal that 61.32% of participants agreed and totally agreed about believing in E-tourist and 19.26% had no idea. Similarly, 19.42% disagreed and totally disagreed. Among the questions on degree of believing in E-tourism across the whole province, believing in saving in time, place and space in tourism and creating more business opportunities in E-commerce using information technology ranked first simultaneously based on Table 4.

Table 4. Description of the information on believing in E-tourism based on the questionnaire's data in Isfahan province

Index	Totally	Agree	No	Disagree	Totally	Mean of
	agree		idea		disagree	question
Enhancement of residents' digital literacy level (familiarity with computer and the internet) is effective on tourists' attraction.	117	157	63	20	27	3.75
Use of the information technology will save the time.	131	177	52	10	14	3.97
Use of the information technology will save the place and space.	133	170	62	5	14	3.97
Developing accessibility to telephone and mobile phone networks is effective on tourists' attraction.	69	152	95	43	25	3.77
Development of high speed internet is		146	77	29		

effective on attracting the tourists.	113				19	3.9
Use of three-dimensional pictures (panorama) of tourism places in websites will increase the number of tourists.	73	127	110	33	41	3.28
It is possible to develop virtual tourism in the city where I live.	93	81	113	69	28	3.11
Traditional (real) tourism is flourished if E-tourism is developed.	133	145	30	53	23	3.91
Information technology causes to increase the number of tourists who use tourism attractions.	96	162	81	32	13	3.88
Information technology causes to decrease damages to tourism attractions.	81	166	62	49	26	3.46
Development of the information technology increases tourism security.	39	126	86	97	36	3.18
Virtual tourism is as attractive for tourists as real tourism.	13	99	39	115	118	2.37
Use of the information technology decreases environmental pollution in the city where I live.	55	188	90	28	23	3.67
Information technology creates more business opportunities in E-commerce in tourism.	118	154	81	24	7	3.97
Use of the information technology is the best way to identify tourism destinations.	50	143	86	59	46	3.14
Development of up-to-dated and active websites about tourism attractions of the city where I live will attract tourists.	81	172	74	35	22	3.79
Use of promotional messages can be a good way to introduce tourism attractions of the city where I live.	75	168	56	61	24	3.71
Percent	22.52	38.8	19.26	11.67	7.75	-

4. Analysis of the Hypotheses

Hypothesis 1: It seems that central cities of Isfahan province have a better status in terms of E-tourism indexes.

The cities in Isfahan province are divided into five levels based on the distance with center of the province and then they are divided into five other levels based on the ranks obtained from TOPSIS (E-tourism development).

Table 5. Classification of cities based on the distance between cities and center of Isfahan province

Name of the	Very close (0-	close (40-100)	Not so close	Far (150-	Very far
distance	40)		(100-150)	200)	(more
group					than 200)
(kilometer)					
	Isfahan (0)	Mobarakeh	Chadegan (107)	Naeen (152)	Khur and
	Khomeini Shahr	(46)	Natanz (108)	Golpayegan	Biabanak
	(11)	Tiran and	Fereydan (119)	(162)	(420)
	Falavarjan (12)	Karvan (49)	Ardestan (127)	Kashan	
City	Shahin Shahr	Shahreza (73)	Khansar (139)	(189)	
	(15)	Dehaghan	Fereydunshahr	Aran o	
	Borkhar (15)	(95)	(146)	Bidgol (194)	
	Najaf Abad (23)		Semirom (150)		
	Lenjan (39)				

Table 6. Classification of cities in terms of E-tourism development

Name of the	Developed	Developing	Less developed	Underdeveloped	Very poor
group					
TOPSIS rank	1-3	4-8	9-13	14-18	19-23
	Isfahan	Kashan	Najaf Abad	Falavarjan	Aran o Bidgol
	Shahin	Naeen	Natanz	Ardestan	Chadegan
City	Shahr	Khansar	Tiran and	Mobarakeh	Borkhar
	Khomeini	Dehaghan	Karvan	Fereydan	Fereydan
	Shahr	Shahreza	Khur and	Golpayegan	Semirom
			Biabanak		
			Lenjan		

Having compared Tables 5 and 6, it became clear that among 11 central cities (their distance with the center of Isfahan province is less than 100 kilometers) only five cities have a desirable status in terms of electronic technology. In other words, just 45.4% of central cities have a good status. Thus, hypothesis one is rejected.

Hypothesis 2: It seems that cities with more tourism potential have a better status in terms of E-tourism indexes.

The cities in Isfahan province are divided into three levels (high number potential, moderate number potential and low number potential) in terms of the number of tourism and ecotourism potentials.

Table 7. Classification	Table 7. Classification of cities in terms of the number of tourism and ecotourism potentials								
Name of the group	High number	Moderate number	Low number						
(the number of	potential (30 and	potential (10-20)	potential (0-10)						
potentials)	more)								
	Isfahan 47	Tiran and Karvan 18	Fereydan,						
	Naeen 29	Ardestan 17	Falavarjan 11						
	Shahreza, Natanz 28	Lenjan, Semirim,	Khomeini Shahr 10						
	Khur and Biabanak,	Golpayegan 15	Chadegan 9						
City	Najaf Abad 25	Mobarakeh,	Shahin Shahr 8						
	Khansar 24	Fereydunshahr 14	Borkhar 5						
	Aran o Bidgol 23								
	Dehaghan 22								
	Kashan 21								
Number of cities	10	7	6						

Having compared Tables 6 and 7, it became clear that 10% of high potential cities (Isfahan) are the most developed cities. Also, 50% of these high potential cities are developing. Generally, 60% of high potential cities have a good development status and another 40% do not have a desirable status. Thus, hypothesis two is confirmed.

Hypothesis 3: It seems that there is a positive and significant relationship between citizens' electronic literacy and E-tourism development.

Spearman correlation test was used to test this hypothesis. The results are shown in Table 8. Table 8. Testing the third hypothesis

	E-tourism development		
Citizens' electronic literacy	Spearman correlation	0.220	
	Number	23	
	Significance level	0.000	

The result of the test reveals that there is a positive and direct correlation between citizens' electronic literacy and E-tourism development that is relatively equal to 0.770. Hypothesis three is confirmed.

5. Conclusion

Isfahan, Shahin Shahr and Meimeh and Khomeini Shahr are in first to third grade, respectively in terms of E-tourism indexes. Fereydunshahr and Semirom have been graded as last ones. There is a high correlation between electronic literacy and E-tourism development- more than 60% of the residents have a desirable electronic literacy (high and moderate). Shahin Shahr has the highest rank of electronic literacy and Borkhar has the lowest rank. Using of telephone, pager and mobile phone across the whole province ranked first and using of credit cards ranked second. More than 61% of residents agreed with E-tourism and less than 20% disagreed. Shahreza and Mobarakeh had the highest and lowest ranks in terms of believing in E-tourism respectively. Believing in saving in time, place and space in tourism and creating more business

opportunities in E-commerce using information technology ranked first simultaneously among the residents in Isfahan province.

6. Suggestions

Equal distribution of E-tourism infrastructures across all cities in Isfahan province and making regional balance in this regard are suggested that require more cooperation of the Telecommunication Company with Cultural Heritage Organization and the governorships in cities.

It is suggested to pay more attention to undeveloped cities such as Semirom, Fereydunshahr, Borkhar, Chadegan, Aran o Bidgol, Golpayegan, Fereydan, Mobarakeh, Ardestan, and Falavarjan that have lower information technology infrastructures and offer E-tourism development schedule in them especially in Golpayegan and Ardestan which are at a high level in terms of electronic literacy and at a moderate level in terms of the number of potentials.

It is also suggested to issue electronic credit cards for use in tourism attractions and sell them online for domestic and international visitors

References

Anvari Rostami, M. (2007). Comparative studying of superior companies based on ratios of profitability and indexes of Tehran Stock Exchange. *The Iranian Accounting and Auditing Review*, 43

Asgharpour, M.J. (2010). *Multiple attribute decision-makings*. Tehran: Tehran University publications

Eshkevari Masumi, H. (2009). Principles of regional planning. Tehran: Payam publications

Hekmatnia, H.; Musavi, M. (2007). Use of model in geography by emphasizing urban and regional planning in Tehran. Tehran: Elm Novin publications

Papli Yazdi, M.H.; Saghaee, M. (2010). *Tourism (nature and concepts).* Tehran: SAMT publications

Pourfaraj, A.; Yousefzadeh, R.; Cheraghi, K. (2009). Information and communications technology, tourism industry, economic growth. *Journal of Economics and Modern Business*, 13

Sarfarazi, M.; Memarzadeh, GH. (2011). Mutual relationship between E-tourism and mobile tourism. *Proceedings of Tourism. Cultural and Social Studies Group*, 52

Shamaei, A. (2012). Classification of cities in Isfahan province in terms of tourism infrastructures. *Journal of Urban and Regional Studies*, 10

Statistical yearbook of Communications Regulatory Authority in Isfahan province (2013) Statistical yearbook of Telecommunication Company in Isfahan province (2013)