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Abstract 
In studying about programming languages, the important part is to understand the language 
itself. Learners need to be able to comprehend a program that is completed with syntax, semantic 
and program flow. Most learners especially the novices face a lot of problems when trying to 
learn a program. Many studies have been conducted to observe the process on how learners 
understand the program source code. Usually, the study of program comprehension focuses on 
the combination of two important characteristics: theories and tools. The theories that provide 
how to improve program comprehension and tools that can implement the theories. These two 
characteristics will change the way programmers understand the program codes. Many 
researchers review some of the key theories of program comprehension and discusses on how 
these theories are related to tools that support it. Thus, the aim of this study is to explore the 
evolution of the three predominant approaches of program comprehension in the aspect of 
cognitive theory which are: bottom-up, top-down and the integrated approach. This study also 
considers the important of cognitive model to make the effective learning process. Therefore, 
this paper can provide the intuitive environment for the process of learning especially for novice 
learners. 
Keywords: Program Comprehension, Cognitive Theory, Cognitive Model, Domain Knowledge 
 
Introduction 
Program comprehension is “the process of taking source code and understanding it” (Deimel and 
Naveda 1990) or the process of using the existing knowledge to acquire new knowledge (Aljunid, 
Zin, & Shukur, 2012; Xia et al., 2017). The understanding on program is related to execution 
behaviour and relationship of variables involved in the program (Hu et al., 2018; Sasirekha and 
Hemalatha, 2011). The study of program comprehension can be explained as the process occurs 
in the learners’ mind when they understand a program (Feigenspan and Siegmund, 2012). 
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Source code is a more trusted source of data compared to composed documentation primarily 
since documentation is regularly non-existed or obsolete (Maalej et al., 2014). However, the 
problems still exist if the source code is used as reference to a system. The activity in reviewing 
and understanding a source code is not the same as reviewing ordinary documents and many 
problems in program comprehension arise due to the use of textual representation as the 
primary source of information. In fact, programs are often in the form of a hierarchical structure, 
but the actual behaviour of a program cannot be reflected as it is represented in textual forms. 
Although many methods and tools have been proposed to represent source code, experience 
have shown that textual presentation is the most suitable to represent the software system 
(Krinke, 2004). Despite many studies carried out in finding the different strategies and techniques 
to overcome program comprehension problems, most researchers have yet to discuss on how to 
help the software maintainers to comprehend a program. 
 
The remaining paper is divided into the following main sections: section 2 describes the 
methodology of the study (plan, conduct, and analysis), followed by section 3 discusses the 
findings to research questions. In the end, conclusions are made in Section 4. 
 
Methodology 
This section explains the methodology conducting in this study by examining, exploring and 
classifying the present literature according to the cognitive domain. According to Kitchenham 
(Kitchenham et al., 2009) conducting the literature review are classified into three levels (i) 
Planning, (ii) Conducting and (iii) reporting the review. We followed methodology in this paper. 
In figure 1, we have shown the overall process in conducting this study. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Flow of Study Design 
 
 
Research Objective 
The objective of this research is as below 

1. To identify the types of knowledge, involve in program comprehension process. 
2. To explore the approaches implementing in program comprehension. 

 
3. To present the different existing models for program comprehension. 
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Research Question 
Through this work, we answer those following three research questions (RQs) as shown in 
 
Table 1: 

Table 1 Research Questions 
 
 

ID Research Question Motivation 
 
 

RQ1 What types of knowledge are 
applying in program 
comprehension process? 

 
RQ2 What approaches are used to 

improve the performance of 
learning a program? 

 
RQ3 What are the existing cognitive 

models in the fields of program 
comprehension? 

 

 
To understand the different 
types of knowledge in cognitive 
domain. 
 
To study the different types of 
existing approaches to 
improve learning process of a 
program. 
 
To identify the existing 
cognitive models of program 
comprehension. 
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Knowledge Representation in Program Comprehension Process 
Frequently, most of the studies on program comprehension consider three basic elements that 
complement to the comprehension process. These elements are knowledge based that appear 
in a programmer’s mind; external representation and; the assimilation process (in Figure 2). The 
process flow explains how developers understand a program using their existing knowledge 
through the assimilation process supported by external representation to obtain new knowledge. 
 
 
 
 
 

Knowledge Based 
 

Assimilation 
Process 

(Expert Knowledge) 

                     External 
 

Mental Model 
Representation                (New Knowledge) 

 
Input Phase  Process Phase Output Phase 

 
Figure 2 The Program Comprehension Process 

 
Knowledge-based 
Knowledge based is an experience or existing knowledge on a program contained by a 
programmer. It can determine the programmers' ability to comprehend a program. Table 2 
shows the types of knowledge and researchers discovering the ideas. 
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Table 2 Types of Knowledge  
   

Authors  Types of knowledge 
  

Brooks, 1983; Carvalho, 2013; Rugaber, 2000; Domain Knowledge 
von Mayrhauser & Vans, 1997   

Soloway & Ehrlich, 1984; Wiedenbeck, 1986 Plans and Rules of 
  discourse 

Brooks, 1983; Rist, 1986; Weiss & Mockus, 2013 Beacons and Chunks 

Gellenbeck & Cook, 1991; Shneiderman & Mayer, 1979; Syntactic and Semantic 
Soloway & Ehrlich, 1984   

Busjahn et al., 2014; Détienne, 2002; El-sheikh et al., 2013; Schemas and Abstraction 
Letovsky, 1987; Piaget, 2013)   

   

 
Domain knowledge consists of three domains, which are task/problem domains, intermediate 
domain and program domain (Brooks, 1983). During the comprehension process, the task 
domain is mapped to the intermediate domain and produces the program domain. Moreover, 
hypotheses can be constructed using domain knowledge by predicting the program with 
reference to the existing knowledge. Another types of knowledge is the plan and rules of 
discourse, which is used for developing and validating expectations, interpretations and 
inferences, includes causal knowledge on information flow and the relationships among parts of 
a program (Soloway and Ehrlich, 1984; Wiedenbeck, 1986). 
 
Beacons are the familiar feature in the source code serving as a cue indexed into existing 
knowledge to present certain structure of plans (Brooks, 1983; Rist, 1986). On top of that, 
beacons are utilised to predict hypotheses. Another type of knowledge is schema. According to 
Piaget's theory, schemas are the way of organising knowledge to become as a unit. Each 
knowledge is related to aspects including the object, action and abstract concepts (Piaget, 2013). 
 
External Representations 
External representations are any materials available as an aid to support programmers while 
comprehending a program. The materials can be represented in different ways and formats. The 
external support may be in a form of system documentation, source code, manual, book or 
expert advises as well as techniques and tools. 
 
Assimilation Process 
Assimilation is a process comprehending a program and considering incorporated and 
constructed with existing knowledge. In particular sign, the characteristics of programmers while 
comprehending a program is important since they use all their senses and capabilities to 
understand a program. 
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Program Comprehension Approach 
Cognitive model is used to represent the processes involved in developing and building the 
programmers’ mental model or acquire new knowledge from existing knowledge (Storey 2006). 
Developers use their existing knowledge such as programming expertise, programming language, 
computing environments, programming principles, architectural model, algorithm and solution 
approve as well as domain-specific information or problem-domain, which will after that go 
through the assimilation process supported by external representation. This process is continued 
to obtain new knowledge like functionality, architecture, algorithm implementation, control flow 
and data flow. 
 
Previous studies on cognitive model provide explanations on the short-, long-,and working-
memories used (Brooks 1983; von Mayrhauser and Vans 1997; Pennington 1987; Soloway and 
Ehrlich 1984). Other authors theorised that cognitive internal representation of knowledge is 
produced through the concept of frames, plans, and chunks (Minsky,1974; Rich & Waters, 1990; 
Soloway, 1984). Gagne (1985) also proposed cognitive strategies and believed that environment 
can influence the comprehension process. He stated that to stabilise the cognitive strategies, 
people must have certain techniques of thinking, ways of analysing problems and having 
approaches in solving a problem. People use cognitive strategies in thinking about the things they 
learnt and in solving problems. These are the ways in managing the processes of learning, 
remembering and thinking. Bloom (1956) discovered the ideas of learning domain called Bloom’s 
Taxonomy and adjusted by Anderson et al. (2001). The taxonomy focuses on three domains with 
one of them devoted on cognitive domain that emphasises things that learners to know during 
learning. It involves knowledge and the ability to develop intellectual skills. 
 
Bandura (1994) argued that people can gain new knowledge through viewing or observing. He 
stated the steps involved in learning process, which are attention, retention, reproduction and 
motivation. The first learning step proposed is to pay attention to new things. Learners have to 
pay full attention to grasp a new knowledge. Then, they must have the ability to store the 
information (retention) they obtained. This internal mental state is important as an essential part 
in the learning process. The next step is the reproduction where learners are able to use the 
knowledge they grasp and to be successful in their learning, they have to be motivated to apply 
the new knowledge modelled. 
 
The next is the discussion on the three predominant approaches of program comprehensions, 
which are top-down, bottom-up and integrated meta-model. These models are the foundation 
in creating the new model of program comprehension (Meng et al., 2006; O’brien, 2003). 
 
Top-down 
Typically, top-down approach is adopted when the developers become familiar with the source 
code (Soloway and Ehrlich 1984). This approach is goal-oriented and hypothesis-driven contains 
a hierarchy of goals and plans. It is the dynamic process strategy of reconstructing knowledge to 
formulate hypotheses regarding the domain of the program and mapping this knowledge to the 
source code and use the strategic plan to implementation plan (Brooks 1983; Von Mayrhauser 
and Vans 1995; Storey 2005). However, the limitation of this approach is that it does not consider 
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novices’ capabilities as they are inexperienced in the domain and lack of knowledge to formulate 
hypotheses in the first place 
 
Bottom-up 
Bottom-up approach is introduced by Letovsky (1987) focusing on novice developers since it does 
not require higher level knowledge structures such as design or application-domain knowledge. 
The developer firstly read the code statements and then mentally chunk or group these lines of 
code into higher-level abstractions to form the abstract concepts supported by beacons (Letovsky 
1987; Von Mayrhauser and Vans 1995). This approach is suitable for developers who are 
unfamiliar with the source code. 
 
Integrated Meta-model 
Von Mayrhauser & Vans (1995) introduced the integrated meta-model by integrating the top-
down and bottom-up approaches. The proposed approach is based on the observations. They 
found that neither top-down nor bottom-up is the best approach in the assimilation process (von 
Mayrhauser and Vans 1993). Supported by Storey (2005), the paper mentioned that developers 
can choose to invoke top-down or bottom-up model as a starting point for formulating 
hypotheses when the code is familiar. 
 
Program Comprehension Cognitive Models 
This section discusses the existing models supporting program comprehension. The discussion is 
based on selected papers focusing on the strategies, approaches and the process taken to 
assimilate the existing knowledge to yield new knowledge. Figure 3 shows the evolution of 
program comprehension discussed by Schulte et al. (2010). In previous studies, most of the 
researchers used the cognitive model as a strategy to propose a program comprehension model. 
They believe that this is the way of managing the processes of learning, remembering, and 
thinking. 
 
The first model proposed by Shneiderman & Mayer (1979) uses the bottom-up approach focusing 
on novice users. The model involves the short-term memory and long-term memory as well as 
the internal semantic knowledge to develop mental model. It involves a process of chunking in 
which users are mentally making a chunk out of a program guided by the beacons. Pennington 
(1987) proposed a model with bottom-up approach guided by beacons, plans and text structure 
to perform chunking process. The work integrated the domain and program model to depict 
situation model. Burkhardt et al (2002) in their study use bottom-up approach to comprehend 
Object-Oriented Program compared to Shneiderman & Mayer (1979); Pennington (1987) that 
focuses on structured program. 
 
Instead of cognitive models, the combination of other models were applied in the studies such 
as text comprehension model (Pennington 1987), constructivist model (Exton, 2002; Václav et 
al., 2002), vision model (Ali et al., 2011) and problem solving model (Douce, 2008). Learning 
Model proposed by Rajlich & Wilde (2002) interprets programmes based on constructivist theory 
where the developer divides program comprehension process into assimilation and adaptation. 
From his perspective, assimilation is the process of adding new facts to mental model, otherwise 
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adaptation is the process of organising the existing knowledge to absorb new knowledge. Xu 
(2005) extends the Learning Model, namely Multi-Dimensional Model integrating the Bloom’s 
Taxonomy, cognitive model and learning model. This study looks at the activities of assimilation 
and accommodation in the learning process. Although this study focuses on experts to make a 
hypothesis, it is also suitable for novices as it combines top-down and the bottom-up approaches. 
 
Meng et al. (2006) introduced the Comprehension Process Model that utilises ontology and the 
description logic to constitute the content of mental model. The ontology based on story-drive is 
used to model the sources of information that describes the behaviour of a program. Store Model 
proposed by Douce (2008) is the heuristic model combining the elements in the working memory 
model and other knowledge such as strategic, semantic and plan. Frey et al (2011) worked on 
categorisation and separation of concern to build a mental model. Their study took an element 
in programmers' knowledge to understand the program of concern. The process 
makes use of prediction or hypothesis using prior knowledge and verification on the prediction 
will update the knowledge about the concern. The classification of the models was made as 
shown in Table 3. 
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Figure 3 Evolution of Program Comprehension Model 
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Table 3 The Classification of Program Comprehension Model 
 
 

 Authors Approaches Comprehension Types of Knowledge 
   Process  
     

 Burkhardt et al., 2002; Bottom-up Chunks Syntactical and 
 Pennington, 1987;   semantic, beacons, 
 Shneiderman & Mayer, 1979   plans 

 Brooks, 1983; Vaclav et al., Top-down Hypothesis Beacons, schema, 
 1994; Soloway & Ehrlich,  

Chunks 
rules of discourse, 

 
1984 

 
plans    

 Ali et al., 2011; Douce, 2008; Integrated Chunks Domain expertise, 
 Frey et al., 2011; Letovsky,  

Hypothesis 
domain goal, rules of 

 
1987; von Mayrhauser & 

 
discourse, plans,    

 Vans, 1997; Xu, 2005)   beacons 
     

 
Conclusion and Future Work 
This study is important in order to help novice learners to improve their comprehension in 
their learning process. Besides, this study can be seen as a form of guideline for researchers 
who is interested in developing tools that focus on improving comprehension. Besides, this 
study can contribute as an introduction in learning programming language for the novices. 
Future work will focus on the development of new technique in order to improve 
understanding in program comprehension activity. As well as to produce effective tool that 
can be used as an aid among novice learners when they learn a programming language; and 
to measure the significance of the proposed technique and its tool in improving 
comprehension if it is used among novices. 
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