

# Effect of Credit Risk Management on Private and Public Sector Banks in India

# **Asha Singh**

Research Scholar, Mewar University, Chittorgarh, Rajasthan, India Email: asha2007singh@yahoo.co.in

DOI: 10.6007/IJARBSS/v5-i1/1404 URL: http://dx.doi.org/10.6007/IJARBSS/v5-i1/1404

**Abstract:** This paper examines the effect of credit risk management on private and public sector banks in India. Credit risk occurs when customers default or fail to comply with their obligation to service debt, triggering a total or partial loss. The primary cause of credit risk is poor credit risk management. When banks manage their risk better, they will get advantage to increase their performance (return). For this purpose researcher has taken one dependent return on asset (ROA) and two independent variables capital adequacy ratio (CAR) and non-performing assets (NPAs). The ROA is performance indicator. The CAR and NPAs is credit risk management indicator. Researcher has applied two way regression model.

**Keywords:** Return on Asset, Capital Adequacy Ratio, Non-Performing Assets, Public Sector Banks, Private Sector Banks.

#### Introduction

The banking has become the foundation of modern economic development. According to the dictionary, the term bank means the side of the sea, a little hill, a shoal in the sea or a repository for money. In economics, a bank means a repository for money of the whole economy (Kapoor, 2004).

The three primary activities of a commercial bank which distinguish it from the other financial institutions. These are: (i) maintaining deposit accounts including current accounts, (ii) issue and pay cheques, and (iii) collect cheques for the bank's customers. Effective credit risk management should be a critical component of a bank's overall risk management strategy and is essential to the long-term success of any banking organization. It becomes more and more significant in order to ensure sustainable profits in banks (Singh, 2013).

Credit Risk Management (CRM) has a systematic analysis of various forms of risks that influence or has likely to influence the repayment of loan given by the bank. The issue of effective credit risk management in banks has brought in focus due to global financial crisis. It has imperative for a bank in particular and for banking system in general to regularly monitor and review the CRM practices (Colquitt, 2007). A sound credit risk management has built upon a good-quality portfolio of performing assets.

CRM of financial institutions represents all policies and procedures those financial institutions have implemented to manage, monitor and control their exposure to risk (Vasile and Nechif, 2010).

The proper credit risk architecture, policies and framework of credit risk management, credit rating system, monitoring and control has been contributed in success of credit risk



management system (Bodla & Verma, 2009; Darwish, 2015). According to them, market conditions and company structures are different, credit risk management should be adjusted by institutions to comply with their needs and circumstances.

## Need of credit risk management

There are many existing tools and basic principles of management theory of credit risk management in Indian Commercial Banks; there is always scope for improvement and correction. Banks are investing a lot of funds in credit risk. Credit risk management is very important to banks as it is an integral part of the loan process. It minimizes bank risk, adjusted risk rate of return by maintaining credit risk exposure with view to shielding the bank from the adverse effects of credit risk. So strong and depth study of credit risk management give strengthening the risk control management in Indian commercial banks.

#### Literature review

A number of studies had provided the discipline into the practice of credit risk management within banking sector. Some related studies are given below:

Amran, et al. (2009), explored the availability of risk disclosures in the annual reports of Malaysian companies. The study was aimed to empirically test the characteristics of the sampled companies. The level of risk faced by these companies with the disclosure made was also assessed and compared. The findings of the research revealed that the strategic risk came on the top, followed by the operations and empowerment risks being disclosed by the selected companies. The regression analysis proved significantly that size of the companies did matter. The stakeholder theory explains well this finding by stating that "As company grows bigger, it will have a large pool of stakeholders, who would be interested in knowing the affairs of the company." The extent of risk disclosure was also found to be influenced by the nature of industry. As explored within this study, infrastructure and technology industries influenced the companies to have more risk information disclosed.

Hassan, (2009), made a study "Risk Management Practices of Islamic Banks of Brunei Darussalam" to assess the degree to which the Islamic banks in Brunei Darussalam implemented risk management practices and carried them out thoroughly by using different techniques to deal with various kinds of risks. The results of the study showed that, like the conventional banking system, Islamic banking was also subjected to a variety of risks due to the unique range of offered products in addition to conventional products. The results showed that there was a remarkable understanding of risk and risk management by the staff working in the Islamic Banks of Brunei Darussalam, which showed their ability to pave their way towards successful risk management. The major risks that were faced by these banks were Foreign exchange risk, credit risk and operating risk. A regression model was used to elaborate the results which showed that Risk Identification, and Risk Assessment and Analysis were the most influencing variables and the Islamic banks in Brunei needed to give more attention to those variables to make their Risk Management Practices more effective by understanding the true application of Basel-II Accord to improve the efficiency of Islamic Bank's risk management systems.



Thiagarajan et al., (2011) analyzed the role of market discipline on the behavior of commercial banks with respect to their capital adequacy. The study showed that the Capital Adequacy Ratio (CAR) in the Indian commercial banking sector showed that the commercial banks were well capitalized and the ratio was well over the regulatory minimum requirement. The private sector banks showed a higher percentage of tier-I capital over the public sector banks. However the public sector banks showed a higher level of tier-II capital. Although the full implementation of Basel II accord by the regulatory authority (RBI) might have influenced the level of capital adequacy in the banking sector. The study indicated that market forces influence the bank's behavior to keep their capital adequacy well above the regulatory norms. The Non-Performing Assets significantly influenced the cost of deposits for both public and private sector banks. The return on equity had a significant positive influence on the cost of deposits for private sector banks. The public sector banks could reduce the cost of deposits by increasing their tier-I capital.

Based upon literature review, this research paper analyzed the credit risk management of private sector and public sector banks.

#### **Data collection**

This study is based on secondary data. The required data for this study were collected from the various sources like monthly RBI bulletins, published by RBI, Govt. of India, Reports published by National Institute of Bank Management, Annual reports of various banks, publications and notifications of RBI, Reports published by Indian Bank Association(IBA) etc. The performance analysis for this study is based on selected 20 banks (10 public and 10 private sector banks). The data of ROA, CAR and NPA of banks has been taken from 2002-03 to 2012-13. For comparative analysis of performance of the private and public sector banks, multiple regression analysis tests have been applied. Researcher has applied two way regression model. The computed values of multiple regression analysis are given below:

#### **Public Sector Banks**

## **Run Summary Report**

| Item               | Value             | Rows                    | Value  |
|--------------------|-------------------|-------------------------|--------|
| Dependent Variable | ROA               | Rows Processed          | 11     |
| Number Ind.        | 5                 | Rows Filtered Out       | 0      |
| Variables          |                   |                         |        |
| Weight Variable    | None              | Rows with X's Missing   | 0      |
| R <sup>2</sup>     | 0.8596            | Rows with Weight        | 0      |
|                    |                   | Missing                 |        |
| Adj R <sup>2</sup> | 0.7193            | Rows with Y Missing     | 0      |
| Coefficient of     | 0.0811            | Rows used in Estimation | 11     |
| Variation          |                   |                         |        |
| Mean Square Error  | 0.005714492       | Sum of Weights          | 11.000 |
| Square Root of MSE | 0.07559426        |                         |        |
| Ave Abs Pct Error  | 4.816             |                         |        |
| Completion Status  | Normal Completion |                         |        |



# **Descriptive Statistics**

| Variable | Count | Mean      | Standard  | Minimum | Maximum  |
|----------|-------|-----------|-----------|---------|----------|
|          |       |           | Deviation |         |          |
| CAR      | 11    | 12.71818  | 0.3712093 | 12.2    | 13.28    |
| NPA      | 11    | 1.808182  | 1.096766  | 0.94    | 4.54     |
| CAR*CAR  | 11    | 161.8774  | 9.473074  | 148.84  | 176.3584 |
| CAR*NPA  | 11    | 23.00484  | 13.9774   | 12.3234 | 57.204   |
| NPA*NPA  | 11    | 4.363064  | 5.890894  | 0.8836  | 20.6116  |
| ROA      | 11    | 0.9318182 | 0.1426757 | 0.78    | 1.27     |

# **Regression Coefficients T-Tests**

| Independent<br>Variable | Regression<br>Coefficient<br>b(i) | Standard<br>Error<br>Sb (i) | Standardized<br>Coefficient | T-<br>Statistic<br>to Test | Prob<br>Level | Reject<br>H0 at<br>5%? | Power<br>of<br>Test |
|-------------------------|-----------------------------------|-----------------------------|-----------------------------|----------------------------|---------------|------------------------|---------------------|
|                         |                                   |                             |                             | H0:β(i)=0                  |               |                        | at 5%               |
| Intercept               | 6.966859                          | 40.50602                    | 0.0000                      | 0.172                      | 0.8702        | No                     | 0.0523              |
| CAR                     | -0.7221501                        | 6.383727                    | -1.8789                     | -0.113                     | 0.9143        | No                     | 0.0510              |
| NPA                     | -3.947682                         | 1.392722                    | -30.3463                    | -2.835                     | 0.0365        | Yes                    | 0.6246              |
| CAR*CAR                 | 0.02028805                        | 0.2514274                   | 1.3470                      | 0.081                      | 0.9388        | No                     | 0.0505              |
| CAR*NPA                 | 0.2961413                         | 0.1032733                   | 29.0118                     | 2.868                      | 0.0351        | Yes                    | 0.6343              |
| NPA*NPA                 | 0.04369923                        | 0.02491098                  | 1.8043                      | 1.754                      | 0.1398        | No                     | 0.2975              |

# **Regression Coefficients Confidence Intervals**

| Independent<br>Variable | Regression Coefficient b(i)             | Standard Error<br>Sb(i) | Lower 95% Conf. Limit of β(i) | Upper 95% Conf.<br>Limit of β(i) |
|-------------------------|-----------------------------------------|-------------------------|-------------------------------|----------------------------------|
|                         | • • • • • • • • • • • • • • • • • • • • | ``                      |                               |                                  |
| Intercept               | 6.966859                                | 40.50602                | -97.15717                     | 111.0909                         |
| CAR                     | -0.7221501                              | 6.383727                | -17.13204                     | 15.68774                         |
| NPA                     | -3.947682                               | 1.392722                | -7.527787                     | -0.3675774                       |
| CAR*CAR                 | 0.02028805                              | 0.2514274               | -0.6260266                    | 0.6666027                        |
| CAR*NPA                 | 0.2961413                               | 0.1032733               | 0.03066877                    | 0.5616139                        |
| NPA*NPA                 | 0.04369923                              | 0.02491098              | -0.02033684                   | 0.1077349                        |

Note: The T-Value used to calculate these confidence limits was 2.571.

# **Estimated Equation**

ROA = 6.96685890314003 - 0.722150060290219 \* CAR - .94768231192395 \* NPA + 0.0202880487930567 \* CAR\*CAR +0.296141335027043 \* CAR\*NPA + 0.0436992284222498 \*NPA\*NPA



**Analysis of Variance** 

| Source          | DF | R <sup>2</sup> | Sum of     | Mean        | F-Ratio | Prob   | Power  |
|-----------------|----|----------------|------------|-------------|---------|--------|--------|
|                 |    |                | Squares    | Square      |         | Level  | (5%)   |
| Intercept       | 1  |                | 9.551136   | 9.551136    |         |        |        |
| Model           | 5  | 0.8596         | 0.1749912  | 0.03499823  | 6.124   | 0.0342 | 0.7346 |
| Error           | 5  | 0.1404         | 0.02857246 | 0.005714492 |         |        |        |
| Total(Adjusted) | 10 | 1.0000         | 0.2035636  | 0.02035636  |         |        |        |

**Analysis of Variance Detail** 

| Source          | DF | R <sup>2</sup> | Sum of       | Mean             | F-Ratio | Prob Level | Powe       |
|-----------------|----|----------------|--------------|------------------|---------|------------|------------|
|                 |    |                | Squares      | Square           |         | 1100 2010  | r(5%)      |
| Intercept       | 1  |                | 9.551136     | 9.551136         |         |            |            |
| Model           | 5  | 0.8596         | 0.1749912    | 0.03499823       | 6.124   | 0.0342     | 0.734<br>6 |
| CAR             | 1  | 0.0004         | 7.312804E-05 | 7.312804E-<br>05 | 0.013   | 0.9143     | 0.051      |
| NPA             | 1  | 0.2255         | 0.04591276   | 0.04591276       | 8.034   | 0.0365     | 0.624<br>6 |
| CAR*CAR         | 1  | 0.0002         | 3.720772E-05 | 3.720772E-<br>05 | 0.007   | 0.9388     | 0.050<br>5 |
| CAR*NPA         | 1  | 0.2308         | 0.04698934   | 0.04698934       | 8.223   | 0.0351     | 0.634<br>3 |
| NPA*NPA         | 1  | 0.0864         | 0.01758505   | 0.01758505       | 3.077   | 0.1398     | 0.297<br>5 |
| Error           | 5  | 0.1404         | 0.005714492  | 0.00571449<br>2  |         |            |            |
| Total(Adjusted) | 10 | 1.0000         | 0.02035636   | 0.02035636       |         |            |            |

## **Normality Tests**

| Test Name           | Test Statistic to Test<br>H0: Normal | Prob Level | Reject H0 at 20% |
|---------------------|--------------------------------------|------------|------------------|
| Shapiro Wilk        | 0.966                                | 0.8414     | No               |
| Anderson Darling    | 0.202                                | 0.8788     | No               |
| D'Agostino Skewness | 0.097                                | 0.9229     | No               |
| D'Agostino kurtosis | -0.531                               | 0.5952     | No               |
| D'Agostino Omnibus  | 0.292                                | 0.8643     | No               |

It has been observed from run summary report that dependent variable ROA number of independent variable 9, value of R<sup>2</sup> is 0.9367, Adj R<sup>2</sup> is 0.3674, Coefficient of variation is 0.1218, Mean Square Error is 0.01287711, Square Root of MSE is 0.1134774 and Ave Abs Pct Error is 2.621.



**Descriptive Statistics:** There are three main variables in descriptive statistics such as CAR, NPA and ROA. The CAR consist of mean value = 12.71818 and standard deviation = 0.3712093. The NPA consist of mean value = 1.808182 and standard deviation = 1.096766. The ROA consist of mean value = 0.9318182 and standard deviation = 0.1426757.

**Regression Coefficients T-Tests:** There are two main independent variable in regression coefficients T-Tests such as NPA and CAR. The CAR consist of regression coefficient = 151.3399, standard error = 585.251, standardised coefficient = 393.7516, t-statistic to test H0 = 0.259, prob level =0.8389, reject H0 at 5% = No and power of test at 5% = 0.0517. The NPA consist of regression coefficient = - 108.8978, standard error = 361.5493, standardised coefficient = -837.1107, t-statistic to test H0 = -0.301, prob level =0.8138, reject H0 at 5% = No and power of test at 5% = 0.0522.

**Regression Coefficients Confidence Intervals**: There are two main independent variable of regression coefficients confidence intervals such as CAR and NPA.

The CAR consist of regression coefficient = 151.3399, standard error = 585.251, lower 95% confidence limit = -7284.979 and upper 95% confidence limit = 7587.659. The NPA consist of regression coefficient = -108.8978, standard error = 361.5493, lower 95% confidence limit = -4702.817 and upper 95% confidence limit = 4485.021. The T – Value used to calculate these confidence limits were 12.706.

Analysis of Variance: Analysis of variance consists of different sources such as Intercept, Model, Error and Total (Adjusted). The source Total (Adjusted) contains degree of freedom = 10, the value of  $R^2 = 1$ , the value of sum of squares = 0.2035636 and the value mean square = 0.02035636.

**Normality Tests:** The Normality Test consist of Shapiro Wilk, Anderson Darling, D'Agostino Skewness, D' Agostino Kurtosis, D' Agostino Omnibus.

## **Private Sector Banks**

## **Run Summary Report**

| Item                     | Value             | Rows                     | Value  |
|--------------------------|-------------------|--------------------------|--------|
| Dependent Variable       | ROA               | Rows Processed           | 11     |
| Number Ind. Variables    | 5                 | Rows Filtered Out        | 0      |
| Weight Variable          | None              | Rows with X's Missing    | 0      |
| R <sup>2</sup>           | 0.6273            | Rows with Weight Missing | 0      |
| Adj R <sup>2</sup>       | 0.2546            | Rows with Y Missing      | 0      |
| Coefficient of Variation | 0.3244            | Rows used in Estimation  | 11     |
| Mean Square Error        | 0.0996022         | Sum of Weights           | 11.000 |
| Square Root of MSE       | 0.3155982         |                          |        |
| Ave Abs Pct Error        | 40.837            | _                        |        |
| Completion Status        | Normal completion |                          |        |



# **Descriptive Statistics**

| Variable | Count | Mean      | Standard Deviation | Minimum | Maximum  |
|----------|-------|-----------|--------------------|---------|----------|
| CAR      | 11    | 13.66818  | 1.746836           | 11.7    | 16.29    |
| NPA      | 11    | 1.585455  | 1.379604           | 0.53    | 4.95     |
| CAR*CAR  | 11    | 189.5932  | 49.50351           | 136.89  | 265.3641 |
| CAR*NPA  | 11    | 20.7683   | 17.12718           | 7.35    | 63.36    |
| NPA*NPA  | 11    | 4.243946  | 7.266837           | 0.2809  | 24.5025  |
| ROA      | 11    | 0.9727273 | 0.3655432          | 0.13    | 1.63     |

# **Regression Coefficients T-Tests**

| Independent | Regression  | Standard  | Standardize | T-Statistic | Prob   | Reject | Power   |
|-------------|-------------|-----------|-------------|-------------|--------|--------|---------|
| Variable    | Coefficient | Error     | d           | to Test     | Level  | H0 at  | of Test |
|             | b(i)        | Sb (i)    | Coefficient | H0:β(i)=0   |        | 5%?    | at 5%   |
| Intercept   | -1.788702   | 12.29687  | 0.0000      | -0.145      | 0.8900 | No     | 0.0517  |
| CAR         | 0.5960591   | 1.681987  | 2.8484      | 0.354       | 0.7375 | No     | 0.0598  |
| NPA         | -2.594419   | 3.344458  | -9.7917     | -0.776      | 0.4730 | No     | 0.0977  |
| CAR*CAR     | -           | 0.0573261 | -3.4818     | -0.448      | 0.6726 | No     | 0.0658  |
|             | 0.0257104   |           |             |             |        |        |         |
|             | 6           |           |             |             |        |        |         |
| CAR*NPA     | 0.155393    | 0.2667032 | 7.2808      | 0.583       | 0.5854 | No     | 0.0768  |
| NPA*NPA     | 0.0883616   | 0.0649831 | 1.7566      | 1.360       | 0.2320 | No     | 0.1991  |
|             | 1           | 2         |             |             |        |        |         |

# **Regression Coefficients Confidence Intervals**

| Independent<br>Variable | Regression<br>Coefficient b(i) | Standard Error<br>Sb(i) | Lower 95% Conf.<br>Limit of β(i) | Upper 95% Conf.<br>Limit of β(i) |
|-------------------------|--------------------------------|-------------------------|----------------------------------|----------------------------------|
| Intercept               | 6.966859                       | 40.50602                | -97.15717                        | 111.0909                         |
| CAR                     | -0.7221501                     | 6.383727                | -17.13204                        | 15.68774                         |
| NPA                     | -3.947682                      | 1.392722                | -7.527787                        | -0.3675774                       |
| CAR*CAR                 | 0.02028805                     | 0.2514274               | -0.6260266                       | 0.6666027                        |
| CAR*NPA                 | 0.2961413                      | 0.1032733               | 0.03066877                       | 0.5616139                        |
| NPA*NPA                 | 0.04369923                     | 0.02491098              | -0.02033648                      | 0.1077349                        |

Note: The T-Value used to calculate these confidence limits was 2.571.

# **Estimated Equation**

ROA = 6.96685890314003 - 0.722150060290219 \*CAR - 3.94768231192395 \*NPA +0.0202880487930567 \* CAR\*CAR +0.296141335027042 \* CAR\*NPA +0.0436992284222498 \*NPA\*NPA



## **Analysis of Variance**

| Source          | DF | R <sup>2</sup> | Sum of     | Mean        | F-Ratio | Prob   | Power  |
|-----------------|----|----------------|------------|-------------|---------|--------|--------|
|                 |    |                | Squares    | Square      |         | Level  | (5%)   |
| Intercept       | 1  |                | 9.551136   | 9.551136    |         |        |        |
| Model           | 5  | 0.8596         | 0.1749912  | 0.03499823  | 6.124   | 0.0342 | 0.7346 |
| Error           | 5  | 0.1404         | 0.02857246 | 0.005714492 |         |        |        |
| Total(Adjusted) | 10 | 1.0000         | 0.2035636  | 0.02035636  |         |        |        |

# **Analysis of Variance Detail**

| Source          | DF | R <sup>2</sup> | Sum of     | Mean       | F-Ratio | Prob   | Power(5%) |
|-----------------|----|----------------|------------|------------|---------|--------|-----------|
|                 |    |                | Squares    | Square     |         | Level  |           |
| Intercept       | 1  |                | 10.40818   | 10.40818   |         |        |           |
| Model           | 5  | 0.6237         | 0.8382072  | 0.1676414  | 1.683   | 0.2908 | 0.2529    |
| CAR             | 1  | 0.0094         | 0.01250841 | 0.01250841 | 0.126   | 0.7375 | 0.0598    |
| NPA             | 1  | 0.0449         | 0.05993741 | 0.05993741 | 0.602   | 0.4720 | 0.0977    |
| CAR*CAR         | 1  | 0.0150         | 0.02003475 | 0.02003475 | 0.201   | 0.6726 | 0.0658    |
| CAR*NPA         | 1  | 0.0253         | 0.03381234 | 0.03381234 | 0.339   | 0.5854 | 0.0768    |
| NPA*NPA         | 1  | 0.1378         | 0.1841599  | 0.1841599  | 1.849   | 0.2320 | 0.1991    |
| Error           | 5  | 0.3727         | 0.498011   | 0.0996022  |         |        |           |
| Total(Adjusted) | 10 | 1.0000         | 1.336218   | 0.1336218  |         |        |           |

## **Normality Tests**

| Test Name           | Test Statistic to Test H0 Normal | Prob Level | Reject H0 at 20% |
|---------------------|----------------------------------|------------|------------------|
| Shapiro Wilk        | 0.966                            | 0.8414     | No               |
| Anderson Darling    | 0.202                            | 0.8788     | No               |
| D'Agostino Skewness | 0.097                            | 0.9229     | No               |
| D'Agostino kurtosis | -0.531                           | 0.5952     | No               |
| D'Agostino Omnibus  | 0.292                            | 0.8643     | No               |

It has been observed from run summary report that dependent variable ROA number of independent variable 9, weight variable is none, value of R<sup>2</sup> is 0.8979, Adj R<sup>2</sup> is 0.0000, Coefficient of variation is 0.3798, Mean Square Error is 0.01364885, Square Root of MSE is 0.3694435 and Ave Abs Pct Error is 12.652.

**Descriptive Statistics:** There are three main variables in descriptive statistics such as CAR, NPA and ROA. The CAR consist of mean value = 13.66818 and standard deviation = 1.746836. The NPA consist of mean value = 1.585455 and standard deviation = 1.379604. The ROA consist of mean value = 0.9727273 and standard deviation = 0.3655432.

**Regression Coefficients T-Tests:** There are two main independent variable in regression coefficients T-Tests such as NPA and CAR. The CAR consist of regression coefficient = 263.0284, standard error = 299.024, standardised coefficient = 1256.9446, t-statistic to test H0 = 0.880, prob level =0.5407, reject H0 at 5% = No and power of test at 5% = 0.0681. The NPA consist of regression coefficient = 305.0234, standard error = 259.5638, standardised coefficient =



1151.1950, t-statistic to test H0 = 1.175, prob level =0.4489, reject H0 at 5% = No and power of test at 5% = 0.0809.

**Regression Coefficients Confidence Intervals**: There are two main independent variable of regression coefficients confidence intervals such as CAR and NPA.

The CAR consist of regression coefficient = 263.0284, standard error = 299.024, lower 95% confidence limit = -3536.432 and upper 95% confidence limit = 4062.489. The NPA consist of regression coefficient = 305.0234, standard error = 259.5638, lower 95% confidence limit = -2993.048 and upper 95% confidence limit = 3603.094. The T – Value used to calculate these confidence limits were 12.706.

**Analysis of Variance:** Analysis of variance consists of different sources such as Intercept, Model, Error and Total (Adjusted). The source Total (Adjusted) contains degree of freedom = 10, the value of  $R^2 = 1$ , the value of sum of squares = 1.336218 and the value mean square = 0.1336218.

**Normality Tests:** The Normality Test consist of Shapiro Wilk, Anderson Darling, D'Agostino Skewness, D' Agostino Kurtosis, D' Agostino Omnibus.

#### Conclusion

The study shows that there is a significant relationship between bank performance (in terms of return on assets) and credit risk management (in terms of loan performance). Better credit risk management results in better bank performance. The extent of NPA is comparatively higher in public sectors banks. To improve the efficiency and profitability, the NPAs have to be scheduled. Various steps have been taken by government to reduce the NPAs. CAR is higher in case of private sector banks. All public sector banks have to work on enhancing their CAR. On the basis of the above findings we can say that the performances of private sector banks are much better than public sector banks.

The banks those who are facing low competitiveness on credit risk management and positive changes in productivity should improve their credit risk management to maintain high productivity. However it needs to build up its capital adequacy ratio and control its non-performing assets. The poor credit risk management affects bank failures in India. Therefore effective credit risk management is important in banks and allows them to improve their performance and prevent bank distress.

## References

- Arman, A., Bin, A. M. R., and Hassan, B. C. H. M. (2009), "Risk Reporting: An Exploratory Study on Risk Management Disclosure in Malaysian Annual Reports", *Managerial Auditing Journal*, Vol. 24, No.1, pp. 39-57.
- Bodla, B. S., & Verma, R. (2009), *Credit risk management framework at banks in India,* The ICFAI University Journal of Bank Management, VIII, issue 1, pp.47-72.
- Colquitt, J. (2007), "Credit risk management: how to avoid lending disasters and maximize earnings". Third edition, Mc. Graw-Hill, New York.
- Darwish, S. Z. (2015). Risk and Knowledge in the Context of Organizational Risk Management. *Risk*, 7(15).
- Hassan, M. K. (2009), "Risk Management Practices of Islamic Banks of Brunei Darussalam", *The Journal of Risk Finance*, Vol. 10, No.1, pp. 23-37.



- Kapoor, G. P. (2004), Commercial Banks in India, Publisher A.P.H 2<sup>nd</sup> Edition.
- Asha, S. (2013), "Credit Risk Management in Indian Commercial Banks" in *International Journal of Marketing, Financial Services and Management Research*, Vol. No.2, Issue No.7, Page No.47-51, July.
- Somanadevi, T., Ayyappan, S., and Ramachandran, A.,(2011) "Market Discipline, Behavior and Capital Adequacy of Public and Private Sector Banks in India" *European Journal of Social Sciences*, Vol. 23, Number 1, pp. 109-115.
- Vasile D., and Nechif, R. (2010), *Banking risk management in the light of Basel II,* Theoretical & Applied Economics, XVII, issue 2, pp. 111-122.