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Abstract 
Time series is a set of observations in sequence over time. Time series modelling is used to 
create an applicable model that defines the necessary arrangement of the series by study the 
previous information of a time series. The past information of a time series is used to generate 
forecast value for the series. It is well acknowledged that a time series are regularly affected 
with outliers. Outliers may impact the forecasting where the tendency in parameter estimates 
created by extreme observation will reduce its effectiveness because the optimum predictor 
for an Autoregressive Integrated Moving Average (ARIMA) model is determined by its 
parameters. Thus, the occurrence of extreme observations might have a huge effect on 
predictions value. Therefore, Generalized Autoregressive Conditional Heteroskedastic 
(GARCH) model has been used to compare the result obtain from ARIMA model. This study 
used ARIMA and GARCH to compare the best model for forecasting Kuala Lumpur Composite 
Index (KLCI) when the outlier exists. The best models of ARIMA and GARCH were evaluated 
using Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute 
Percentage Error (MAPE). It can be concluded that GARCH model performed better compared 
to Box-Jenkins ARIMA in forecasting KLCI. 
Keywords: ARIMA, Forecast, GARCH, Time Series, Outlier 
 
Introduction 
Time series is a set of observations in sequence over time. The sequence may be represented 

by the values of t
yyy ,...,,

21  where t  refers to the period of time (Anderson, 1977). Time 

series modelling is used to create an applicable model that defines the necessary 
arrangement of the series by study the previous information of a time series. The past 
information of a time series is used to generate forecast value for the series (Raicharoen et 
al., 2003).  
Box-Jenkins is one of the methods in time series that appropriate for analyzing the time series 
data that have long-series data (Box & Pierce, 1970). It is used to convert non-stationary series 

 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN ACCOUNTING, FINANCE AND 

MANAGEMENT SCIENCES  

 Vol. 1 3 , No. 1, 2023, E-ISSN: 2225-8329 © 2023 HRMARS 
 

332 
 

into stationary. Stationary is when the probability distribution is same for all initial values of 
t . Otherwise, it is not stationary when a series shows a simple trend because the values of 
the series depend on t . The time series can be approached by an Autoregressive Moving 
Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA) model and has to 
fulfill assumption of the variance is consistent for all values of t . However, the time series 
data particularly in financial data shows that the variance of returns is not constant over time 
or the volatility is clustering (Chong et al., 1999).  
Engle (1982) developed Autoregressive Conditional Heteroskedastic (ARCH) model to reflect 
the characteristics of volatility where this model considers the time-varying conditional 
variance of financial time-series using lagged disturbances. However, this model requires a 
large number of parameters to describe the conditional variance. Later, the work of Engle 
(1982) was extended by Bollerslev (1986) to reduce number of parameters in the model. Since 
then, most of the researchers have used these models to financial time series data (Omar & 
Halim, 2015; Husna et al., 2016; San et al., 2011; Hussin et al., 2021; Merabet et al., 2021). 
It is well acknowledged that the time series are regularly affected with outliers. However, 
when the outliers exist in the time series data, the researchers always relied on assumptions 
of the residuals independently integrated and identically distributed (IID) to deal with outliers 
(Fox, 1972). Thus, the tendency in parameter estimates created by outliers will reduce its 
effectiveness and will have a huge effect on predictions value (Bianco et al., 2001). Later, to 
rectify this problem, Fox (1972) proposed two types of outliers in an autoregressive (AR) 
model for time series data (i.e., innovational outlier (IO) and additive outlier (AO)). Afterward, 
many studies on detecting and modeling outlier have been extended to the other classes of 
models including ARIMA, ARCH, GARCH and other models (Ljung, 1993; Chan & Cheung, 1994; 
Zainol, 2010; Gourieroux, 1997; Dijk et al., 1999; Shi & Chen, 2008).  
 
Currently, GARCH time series techniques have been used to forecast Kuala Lumpur Composite 
Index (KLCI) data. However, to date, based on our knowledge, none of the research work have 
consider an outlier exist in the estimate the volatility KLCI stock market data. Therefore, this 
study aims to clarify the types of outlier presence in Kuala Lumpur Composite Index (KLCI) 
which are innovational outlier (IO) and additive outlier (AO) that proposed by previous 
researchers. This study uses daily volatility of stock prices from period 1 January 2011 to 31 
December 2018. The study also intends to compare the best model between ARIMA and 
GARCH model to be incorporated into KLCI daily volatility returns to forecast a future value 
for KLCI 2019. 
 
Data Sources and Method 
The data of Kuala Lumpur Composite Index (KLCI) are used in this study. The data can be 
categorized as quantitative data and were obtained from Financial Times Stock Exchange 
(FTSE) Malaysia KLCI. This indicator is extracted from 100 companies that Bursa Malaysia has 
selected from a cross sector of the total companies in Malaysia. However, the process before 
it is selected to be one of the hundred is much more complicated and a company must meet 
many requirements. This index is taken as an indicator of stock market's performance and 
thus it provides with a standard that reproduces the improvement of Malaysia's economy. 
The data consisted of 1978 price index from January 2011 to December 2018 and were used 
in the process of identification, estimation and forecasting. 
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Stationary of the Series  
The series should be check either it stationary and the seasonality is analysed before further 
study. Seasonality can be caused by different factors such as weather, holidays and consists 
of intermittent, repeated, frequent and predictable patterns in a time series. On a weekly, 
quarterly or monthly basis, seasonality can be repeated. Seasonal pattern can be identified 
by checking the data series time plot. Furthermore, stationary of the data is checked by 
plotting the raw data or using statistical test which is Augmented Dickey-Fuller (ADF) test. If 
the ADF statistic is more negative than the table value, reject the null hypothesis of a unit 
root. The more negative the DF test statistic, the stronger the evidence for rejecting the null 
hypothesis of a unit root. The non-significant results of the tests indicated that the series not 
stationary. The non-stationary series is differenced to make it stationary. The ADF test statistic 
as (1). 

 
)ˆ(

ˆ






SE
DF =  

(1) 
 
 

The unit root test is then carried out under the null  against the alternative hypothesis 

of .   

 
Outliers 
Identification of outliers plays an important role in statistical analysis. Most of the data 
collected for analysis and interpretation contains one or two observations which not identical 
to the rest of the data. Outliers could have arisen naturally or due to human error in data 
collection or theoretical error in model selection. These outliers must properly treat to avoid 
misleading conclusions. Hence, such outliers should be identified and treated properly to 
draw proper conclusions from the data (Deneshkumar & Kannan 2011). An outlier can be 
analysed when a data point is lying far away from the other point of the data (Aguinis et al. 
2013). In the time series model, Fox (1972) first identifies outliers and classifies outliers in two 
categories which is Additive Outliers (AO) and Innovative Outliers (IO). 
 
i. Additive Outier (AO) 
Additive outlier impact the phase at a single point at which it takes place and tends to be a 
relatively large or small value for a single observation. The presence of outliers in these 
findings could have a significant impact on forecasts. There are two ways an additive outlier 
influences the forecasts, firstly through carry-over effect and by attempting to influence the 
forecasts, which means that incorrect parameter values are used in the forecast calculation. 
The error of estimation depends on the type of outliers, an AO will significantly increase the 
predictor error and AO's presence will seriously influence coefficient estimates and variance. 
 
ii. Innovational Outier (IO)  
Innovational outlier is the form of outliers that affects subsequent observations starting from 
their location such as arising from normal randomness. The presence of AO can severely 
influence the estimates of the ARMA coefficients and variance, while IO has a much smaller 
effect in general (Chang & Tiao, 1983). An IO affects only residual at the outlier date and 
affects the next residual, inflating two residuals in a row. This effect has several implications 
for any further residual analysis. According to some experts, if an AO type outlier occurs in an 
observation set, its effects should be excluded. However, if an IO type outlier exists, it should 
be recognized as a result of natural randomness and its effects should not be eliminated. 

0=

0
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Autoregressive Integrated Moving Average (ARIMA) 
Autoregressive Integrated Moving Average (ARIMA) or Box-Jenkins models are mixed of 
Autoregressive (AR) model and Moving Average (MA) model where the series deal with 
difference since the data are non-stationary. The general terms of ARIMA can be presented 
as ARIMA  where indicates the AR order,  is the MA order and d is the number of data that 
needs to be differenced to make the series stationary. The order of   is the lagged of 
dependent or current value and it can be identified using partial autocorrelation (PACF). The 
number of spikes in PACF will determine the order of . While the order of   is referring to the 
number of lagged time period in the model where it is determined by the number of spikes 
in autocorrelation (ACF). ARIMA  is written as (2). 

 

(2) 
 

Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH)  
Modeling and forecasting of asset return volatility is an important area of research in 
academics as well as in finance companies. This necessitates the need for selecting a suitable 
model from a class of GARCH models. GARCH model is well-known as a model of 
heteroscedasticity which is not constant in variance. This model has been used widely in 
financial and business areas, since the data of these areas tend to have variability or highly 
volatile throughout the time. GARCH model is written as GARCH  model where  is the 

number of (MA) terms and is the number of (AR) terms. GARCH  model can be 

represented as (3). 

 

(3) 
 

Volatility of a data needs to be checked before using GARCH model. One of the methods is by 
computing histogram for a stationary series and checking the distribution of data. Kurtosis is 
the measure of peakness of the data distribution and skewness is the measure of symmetrical 
of the distribution about the mean. When the value of kurtosis is greater than three and it is 
skewed either to the left or right, then the series is volatile. 
 
Model Evaluation 
This study used the data of the daily KLCI dataset where it started from 1st January 2011 to 
31st December 2018. It consists of 1978 number of observations. The data were divided into 
two parts which are 70% for estimation and 30% for evaluation (Cerqueira et al. 2019). In 
estimation part, this research included the observations from 3rd January 2011 to 26th July 
2016 which contained 1385 number of observations. For evaluation part, this research 
included the observations from 27th July 2016 to 31st December 2018 which contained 593 
number of observations. There are five typical measures used to evaluate the ARIMA and 
GARCH models which are the Akaike’s Information Criteria (AIC), Bayesian Information 
Criterion (BIC), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Mean 
Absolute Percentage Error (MAPE). 
 
i. Akaike’s Information Criteria  
The common measure of the suitability for the model is Akaike’s Information Criteria (AIC). 
These criteria deal with the penalty on the likelihood for each extra term is incorporated in 
the model. If the additional term does not develop the likelihood more than the penalty 
amount, therefore, it is not worth computing into the model. The AIC equation is given as (4) 
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(4) 

where  represents the number estimated parameters in the model, and 

are the usual respective terms of the AR and MA parts, and are the seasonality parts of 

the ARIMA model and  is the total number of observations in the data of time series. In fact, 

   constitutes a penalty function whose intention is to avoid model is over fitting. The 
purpose of the test is to decide on the values of  such that the value of AIC is 

minimized. In other words, a model is considered as having a better fit among all other 
competing models if the value of its AIC is the smallest. However, the principal of parsimony 
is still being held when choosing the best model where the model has the least number of 
parameters. 
 
ii. Bayesian Information Criterion 
The Bayesian Information Criterion (BIC), also generally known as the Schwarz Criterion (SBC) 
was established by Schwarz in 1978. This criterion aims the method of selecting models that 
accomplish the most precise out-of-sample forecasts by balancing between the models’ 
complexity and goodness-of-fit. On the other hand, to define the best model for SBC, it will 
be choosing the one that has the lowest SBC value. It needs to be restated that the BIC is 
usually used as a model selection criterion when no firm theoretical or empirical reasons are 
offered to decide one model over the other. The BIC equation is given as (5). 

 

(5) 

 
iii. Mean Squared Error (MSE) 
Most specialists used this error measure or standard criterion for evaluating the model’s 
fitness to a specific series of data that are available by most statistical software. This method 
is usually used for comparing the model’s forecasting achievement. Furthermore, if this 
method is being used outside the sample, it usually matches the within sample criterion. The 
MSE is given as (6). 

 

(6) 

for which , where  indicates actual observed value at time  and  is the value 

of fitted at time . 
 
iv. Root Mean Squared Error (RMSE) 
Root mean square error (RMSE) is the standard deviation of the prediction errors. Prediction 
errors are a calculation of how far from the regression line data points are. RMSE is a measure 
of how spread out these residuals is. In other words, it also determines that the concentrated 
data is around the line of best fit. The smaller the value of RMSE, the better is the model. The 
RMSE is given as (7).  
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(7) 

where  is summation,  is differences squared and  is sample size. 

 
v. Mean Absolute Percentage Error (MAPE) 
The mean absolute percentage error (MAPE), also known as the mean absolute percentage 
deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics. 
As an example in trend estimation, it is also used as a loss function for regression problems in 
machine learning. It usually expresses accuracy as a percentage and it is defined as (8). 

 (8) 

Where  is the actual value and  is the value of forecast. The absolute value in this 

calculation is summed for every forecasted point in time and divided by the number of fitted 
points . Multiplying by 100% makes it a percentage error. The smaller the value of MAPE, 
the better is the model. 
 
Results and Discussion 
This research used the data of the daily Kuala Lumpur Composite Index (KLCI) dataset 
collected from database of Thomson Reuters Data stream. It consists of 1978 number of 
observations, where it started from January 2011 to December 2018. Figure 1 shows the plot 
of KLCI. However, the data of price shows that, it has droped sharply in 2011. Besides that, 
the figure shows that the volatility changes over time.  

 
Figure 1. Kuala Lumpur Composite Index from January 2011 to December 2018 with outliers 
plot. 
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Figure 2. Kuala Lumpur Composite Index 
 

   
Figure 3. Log Kuala Lumpur Composite Index. 

 

Figure 4. First differencing Kuala Lumpur 
Composite Index. 
 

   
Figure 5. First differencing Log Kuala Lumpur 
Composite Index. 

Figure 1 shows the plot of the data KLCI and it seems to have an outlier in the series. 
Therefore, the outliers have been identified and found that there are 32 of AO and 31 of IO. 
It showed that the data were non-stationary since there was an increasing trend, cyclical 
component and had irregularities which indicated that the data were not yet stationary. 
Figure 2 shows the KLCI plot while Figure 3 shows the log of KLCI and both are non-stationary. 
Therefore, first differencing is used to make the series stationary as shows in Figure 4 and 
Figure 5. Another way to check the stationary is by using ADF test. The result of ADF test is 
shown in Table 1.  
 
Table 1 
Test statistics for ADF test. 

 
Original Series First Difference Series 

Statistics -2.0918 -12.046 

p-value 0.5395 <0.01 
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The result for the ADF test in Table 1 showed that the value of original series for statistics was 
-2.0918 and the p-value was 0.5395 which were highly not significant. Because the p-value 
was higher than the significance level 0.05, the null hypothesis was accepted which concluded 
that the series were non-stationary. Therefore, the first differencing of the series was 
conducted and the stationary was tested again. It was found that the series became stationary 
where the ADF test showed the p-value was less than 0.01. 
As for GARCH models, the histogram at first difference level need to plot to check either it 
can be used or not. GARCH model only can be used when the data is volatile. Figure 6 shows 
the histogram and Table 2 shows the descriptive statistics at first differencing. 

 
Figure 1. Histogram for Kuala Lumpur Composite Index at first difference level. 

Table 1 
Descriptive statistics for KLCI. 

Skewness Kurtosis 

-0.395275 5.96736 

The histogram in Figure 6 shows skew to the left and the values of kurtosis is more than three 
which indicates the GARCH model can be used. The data used for GARCH model is 
transformed using log transformation and taken from first differencing of the series. 
 
Model Identification and Diagnostic Checking 
To identify the ARIMA model, autocorrelation (ACF) and partial correlation (PACF) graph of 
the series has been used. Figure 7 and Figure 8 show the plot of ACF and PACF after first 
differencing. 
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Figure 7. First differencing of ACF. 
 

   
Figure 8. First differencing of PACF. 

The ACF plot will determine the order for MA(q) while PACF plot will determine the order of 
AR(p). As shows in Figure 7 and Figure 8, there are two spikes for both ACF and PACF plot 
after differencing. Therefore, the model for ARIMA model is denoted by ARIMA ),,( qdp  and 

the model are ARIMA(1,1,0),  ARIMA(1,1,1), ARIMA(2,1,0) and ARIMA(2,1,1). While for the 
GARCH model are GARCH(1,1), GARCH(1,2) and GARCH(1,3). 
 
ARIMA and GARCH performance 
Table 3 shows the result of estimation and evaluation for ARIMA model while Table 4 shows 
for the GARCH model. 
 
Table 2 
ARIMA Model 

 ARIMA 
(1,1,0) 

ARIMA 
(1,1,1) 

ARIMA 
(2,1,0) 

ARIMA 
(2,1,1) 

(i) Estimation     
    AIC 7.392646 7.393525 7.391230 7.392459 
    BIC 7.396427 7.401087 7.398796 7.403808 
     
(ii) Evaluation       
    MSE 85.26118 85.44725 85.72053 85.44825 
    RMSE 9.233698 9.243768 9.258538 9.243822 
    MAPE 117.0019 117.7493 118.8455 117.4827 

 
 
 
 
 
 
 
 
 
 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN ACCOUNTING, FINANCE AND 

MANAGEMENT SCIENCES  

 Vol. 1 3 , No. 1, 2023, E-ISSN: 2225-8329 © 2023 HRMARS 
 

340 
 

Table 3 
GARCH model. 

 GARCH (1,1) GARCH (1,2) GARCH (1,3) 

(i) Estimation    
    AIC -7.563834 -7.563702 -7.573070 
    BIC -7.548711 -7.544798 -7.550384 
    
(ii) Evaluation      
    MSE 0.00002795 0.00002796 0.00027888 
    RMSE 0.005287 0.005288 0.005281 
    MAPE 118.3697 118.1990 118.1037 

 
Based on the result given in Table 3 and Table 4, the best model for modelling is considered 
by the lowest AIC. Therefore, ARIMA(2,1,0) and GARCH(1,2) are the best model for modelling. 
Even though the result or ARIMA(1,1,0) has the lowest BIC, the values of AIC is more 
preferable to use. To find the best model for forecasting, the evaluation of the sample has 
been used. It can be conclude that the best model are ARIMA(1,1,0) and GARCH(1,3) with the 
lowest MSE, RMSE and MAPE. 
 
Forecasting using best Performance 
The best model between ARIMA and GARCH will be choose in order to forecast KLCI in year 
2019. Table 5 shows the result of best model for both ARIMA and GARCH. 
 
Table 4 
Best model between ARIMA and GARCH. 

 ARIMA 
(1,1,0) 

GARCH 
(1,3) 

MSE 0.000027899 0.000027888 
RMSE 0.005282 0.005281 
MAPE 116.5162 118.1037 

 
For the value of error measures of ARIMA(1,1,0) in Table 5, it was different compared to the 
value in Table 3. It is because the observations were transformed using log transformation 
when compared with GARCH. The values for MSE, RMSE and MAPE in ARIMA(1,1,0) were 
0.000027899, 0.005282 and 116.5162 respectively. As for GARCH(1,3), the values for MSE, 
RMSE and MAPE are 0.00002788, 0.005281 and 118.1037. It can be concluded that 
ARIMA(1,1,0) has the lowest MAPE while GARCH(1,3) has the lowest MSE and RMSE. 
However, most preferable in comparing using error measure is by MSE and RMSE. Therefore, 
GARCH(1,3) is been chosen as the best model for forecasting because the values of MSE and 
RMSE are lowest. Figure 9 shows the forecasting time series plot using GARCH(1,3).  
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Figure 9. Forecasting time series plot of KLCI for year 2019. 

Conclusions 
Time series is a set of numbers that measure the status of some activities over time. It is well 
acknowledged that a series of data are regularly affected with outliers. The outliers may affect 
the results in forecasting since the tendency of parameter estimates created by outlier will 
reduce its effectiveness. 
Daily data of Kuala Lumpur Composite Index (KLCI) for the period ranging from January 2011 
to December 2018 are used in this study. As an overview, the result of this study shows there 
are 32 observations that are additive outlier (AO) and 31 observations are innovational 
outliers (IO) in the data. Then, the stationary of the KLCI data set is examined and it shows 
that the series are non-stationary. Hence, differencing is performed to make the data series 
stationary. Box-Jenkins method is used to find the most optimal lags for AR and MA. The result 
shows that ARIMA(1,1,0) and GARCH(1,3) are chosen as the best models since the values of 
error measures are the lowest among others. For each of the model evaluated, the values of 
MSE, RMSE and MAPE are calculated. Furthermore, the values of MSE, RMSE and MAPE in 
evaluation are used to compare the best model between ARIMA and GARCH model. Most of 
the researcher also used the MSE, RMSE and MAPE to find the best model for comparison 
between ARIMA and GARCH where the result shows GARCH model is preferable when to 
forecast volatility. 
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