Vol 12, Issue 2, (2023) E-ISSN: 2226-6348

Establishing the Validity and Reliability of Professional Learning Community (PLC) Inventory in Educational Sector

Thiru Kali Thevi Jayaraman, Nor Hasnida Bt Che Md Ghazali

Faculty of Human Development, Sultan Idris Education University, 35900 Tanjong Malim, Perak Darul Ridzuan, Malaysia

Email: tkthevi80@gmail.com, hasnida@fpm.upsi.edu.my

To Link this Article: http://dx.doi.org/10.6007/IJARPED/v12-i2/17229 DOI:10.6007/IJARPED/v12-i2/17229

Published Online: 12 June 2023

Abstract

The implementation of Profesional Learning Community (PLC) among secondary school teachers can enhance school capacity and excellence. To assess the execution of PLC, a reliable and valid instrument is necessary. This study aims to examine the validity, reliability and EFA of an instrument designed to evaluate the implementation of PLC. A well-designed instrument, which was distributed to 69 secondary school teachers in the form of a questionnaire for measuring the key components of PLC implementation and providing reliable data for research and assessment purposes. The Context, Input, Process and Product (CIPP) Evaluation Model, established by Daniel Stufflebeam, served as the foundation for the instrument. The content validity of the instrument was examined by experts, while the construct validity was assessed using internal consistency reliability or Cronbach Alpha. The pilot study findings suggest that the instrument is both reliable and valid, with 87 out of 91 items retained. This instrument provides a new perspective on measuring the implementation of Profesional Learning Community, especially in the school context.

Keywords: CIPP Model, Evaluation, Exploratory Factor Analysis (EFA), PLC

Introduction

The Malaysian Education Blueprint (PPPM) 2013-2025 Thrust 4 aims to elevate the teaching profession to be preferred profession (KPM, 2014). To ensure the continuity of teacher quality, the Teacher Education Division (BPG) implemented several initiatives, including the Profesional Learning Community (PLC).

The PLC is a school improvement process that involves collaborative efforts from school leadership and community members to generate knowledge and share information to enhance student performance (Zuraidah, 2021). Today's scholars recognize PLC as a critical element capable of transforming educational practices and enhancing the quality of teaching and student performance (Siti Nafsiah, 2019)

Implementing PLC in schools fosters the development of learning values through collaboration, promoting dynamic learning among teachers, students, principals, parents, and the community. Furthermore, PLC serves as agent to optimize the potential and skills of

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

teachers by enhancing the quality of the teaching and learning process and encouraging parental and community involvement in ensuring student success (KPM, 2014)

PLC is composed of five significant dimensions: i) shared and supportive leadership, ii) shared values, norms, missions and vision, iii) collective learning and application, iv) personel sharing practices and v) supportive conditions concerning relationships and structure. These five dimensions have a mutually reinforcing effect in ensuring that teacher learning takes place continuously, thereby enhancing student performance in school (Hipp & Huffman, 2003; Hord, 1997)

Literature Review

PLC, evaluation, instrumentation, validity, reliability and Exploratory Factor Analysis (EFA) from the literature are to be reviewed in this section.

Profesional Learning Community (PLC)

PLC, as defined by IPGM (2021), refers to a collective of teachers and administrators who engage in ongoing exploration, sharing of knowledge, and subsequent implementation of action based on their learning. This collaborative effort aims to enhance teaching practices and overall educational outcomes. On the other hand, the Teacher Professionalism Department (2019) defines KPP as a group of dedicated teachers who work together in a collaborative manner, striving to continuously improve the quality of teaching and contribute to the holistic development of students.

According to Zuraidah (2016), the PLC is considered a highly effective practice in school improvement, aimed at addressing challenges and enhancing student achievement. The primary objective of the PLC is to facilitate the sharing of teachers' skills and knowledge, foster meaningful relationships, plan focused programs, leverage available resources, and promote shared leadership in alignment with the National Education Policy. This collective effort aims to cultivate high-quality human capital for the future (KPM, 2019).

To gauge the impact of PLC implementation and identify areas for improvement, it is essential for the responsible party to assess its strengths, successes and weaknesses. Consequently, this study aims to evaluate the implementation of PLC, examining its positive aspects as well as areas that require enhancement. The findings from this evaluation will provide valuable insights for making necessary improvements.

Evaluation

According to Stufflebeam (2000), evaluation serves two primary purposes. Firstly, it aims to assess achievements and determine the extent to which desired goals and objectives have been accomplished. This helps in understanding the effectiveness and success of the subject under evaluation. Secondly, evaluation seeks to identify alternative options and potential improvements that can contribute to informed decision-making processes. By examining different possibilities and gathering insights through evaluation, decision-makers can make more informed choices and take appropriate actions.

Besides that, the CIPP (Context, Input, Process, Product) model is widely utilized to evaluate program implementation effectiveness due to its comprehensive nature. This model encompasses key dimensions necessary for assessment. It considers the contextual factors surrounding the program, the inputs or resources involved, the process of implementation, and the resulting products or outcomes.

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

Therefore, this CIPP Evaluation Model was chosen to conduct a study on the implementation of the PLC among secondary school teachers in the State of Selangor.

Instrument

The objective of this study was to assess the implementation of the PLC and to establish the validity, reliability and EFA of the instrument used in the evaluation process. A questionnaire was utilized as the survey instrument, featuring a seven-point Likert scale ranging from 'strongly disagree' to 'strongly agree'. The questionnaire was distributed to 69 secondary school teachers in one of the Malaysian states.

The development of the instrument was executed in several stages. The researchers initially conducted an extensive literature search across various theories. Next, the researches utilized Stufflebeam's CIPP Model to design the instrument. Furthermore, they referred to past instruments and constructs developed by the ministry in its documents to aid in the design process. The researchers also sought the assistance of eight field specialists, including evaluation, subject matter, language, institutional and department experts to evaluate the instrument's content validity. Correction and improvements were made based on the experts' comments and suggestions. After completing the final draft, the researches submitted it to the academic advisor for finalization before conducting a pilot study to assess the instrument's validity and reliability criteria.

Validity

Validity refers to the degree of accuracy in representing information on a scale or within an assessment group (Hair et al., 2014). It ensures that the research is conducted as planned by the researcher with accurate and reasonable measurements (Uma Sekaran & Bougie, 2016). In this study, the validity of the questionnaire was established by consulting experts in the field under study. Typically, a review by a minimum of two experts is recommended (Äng & Garme, 2016). In this case, eight experts were involved, with six experts assessing content validity and two experts assessing face validity. All experts possessed extensive experience in the education field, with over fifteen years of expertise.

The experts were asked to rate each item on a four-point scale indicating construct relevance: 1 = irrelevant, 2 = somewhat relevant, 3 = relevant, 4 = very relevant. A total of 94 items were adapted for the study. The researcher compiled and summarized all responses and comments provided by the experts. The researchers then calculated the content validity index (CVI), which takes into account the average rating and the degree of suitability assigned by the experts. A CVI value of ≥ 0.83 (Lynn, 1986) was considered acceptable.

Reliability

Reliability is defined as the stability or consistency of a measure when tested repeatedly (Idris, 2010). Furthermore, the reliability of a measure is achieved when it is consistent and unbiased and measures the concept that should be measured (Sekaran, 2016). In fact, internal consistency is an efficient and often used method to obtain trust in questionnaires (Santhanadass, 2015). In accordance with Creswell (2014) who stated that when the research instrument is in the form of a questionnaire, the best method to use is the reliability of the instrument using the Cronbach Alpha (α) coefficient. Therefore, the reliability of a study is seen based on the Cronbach Alpha value (Hair 2006). The table 1 below shows a guide to the correlation of Cronbach Alpha reliability values:

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

Table 1
Interpretation of Alpha Cronbach (Hair, 2006)

Alpha Cronbach	Interpretation
< 0.60	Unacceptably low reliable
0.61 - 0.70	Reliable
> 0.80	Highly reliable

Exploratory Factor Analysis (EFA)

EFA is used to explore the data in search of information about the factor structure of the data. EFA is important for testing hypotheses and identifying any redundancy between items (Russell, 2002). The items in the questionnaire have been modified from the previous researcher's study to be more suitable to the context of the researcher's study, so the EFA application is followed and implemented with the aim of justifying the entire item (Zainudin Awang et al., 2018). All items under the four constructs (CIPP) in the questionnaire were checked using EFA as suggested by (Williams et al., 2010).

Principal component analysis (PCA) with Varimax rotation was performed on the questionnaire using IBM SPSS software with eigenvalues greater than one being extracted by factors. However, interpretation of results with double loading was done with caution, as recommended by (D. Muijs, 2011). The Varimax with Kaiser Normalization method was used for rotation and the analysis extracted factors from the context evaluation dimension components. The types of items contributing to the factors were found to be consistent with the earlier theory.

Methodology

The pilot study involved 69 secondary school teachers who were selected from the Klang district. It is important to ensure that the participants in the pilot study share similarities with the study population (Konting, 2005) but will not be included in the actual study to avoid contamination (Chua, 2014; Idris, 2013).

The sample size of 69 respondents was deemed sufficient for the researcher to proceed with exploratory factor analysis (EFA) and reliability analysis, as suggested by (Hair et al., 2014). The EFA helps to identify underlying factors or dimensions within the questionnaire, while the reliability analysis assesses the internal consistency and reliability of the instrument.

By conducting the pilot study, the researcher was able to refine the questionnaire further and assess its suitability for the field study. The feedback and responses from the pilot study participants informed any necessary adjustments or improvements to ensure the clarity and comprehensibility of the questionnaire. This process ensured that the final instrument used in the field study was reliable and suitable for capturing the desired data.

Results and Discussion

The results presented in this study are organized based on three fundamental characteristics: the validity, reliability and EFA of the instruments used. A survey administered in this study resulted in 87 original items being retained out of the initial 94 items, based on the assessments of validity, reliability and EFA.

a. Content Validity for Context, Input, Process and Product Evaluation

The CVI analysis was conducted using the formula by Polit and Beck (2006). The CVI for the constructs in this study ranged from 0.94 to 0.98 (Table 2), exceeding the threshold of

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

0.83. This indicated that the research instrument achieved acceptable content validity, as determined by the six experts. However, items with CVI values below 0.83 (Lynn, 1986) were removed. Specifically, two items were eliminated from the input evaluation dimension and one item from the product evaluation dimension.

Table 2 *VI constructs*

Constructs	Expert 1	•	•	Expert 5	Expert 6	CVI
Total Score	0.98	0.97	0.96	0.94	0.98	0.96

In conclusion, after the content validity process, the questionnaire, initially containing 94 items, was refined to retain 91 items. This revised questionnaire was then administered to secondary school teachers for pre-testing and pilot study.

b. Reliability and EFA for Context Evaluation

The dimension of context evaluation consists of three constructs: teachers' perspectives on the National Education Philosophy's goals, teachers' views on the Malaysia education Blueprint (2013–2025) and teachers' assessment of the objective PLC. Each construct is comprised of a total of twelve items with four items for the first construct, three items for the second construct and five items for the third construct. Table 3 displays the utilization of Cronbach's Alpha to assess the internal consistency reliability of each construct. According to the pilot study results that shows in Table 3, the Cronbach's Alpha reliability coefficient for the context evaluation dimension was found to be high. The results suggest that all items in the context evaluation dimension have a minimum value above 0.60, which indicates that the items are acceptable and possess good reliability. Thus, the items in this particular construct can be deemed suitable for use in field studies based on their high reliability coefficients,

Table 3
Cronbach's Alpha values if items are deleted and overall Cronbach's Alpha coefficient for constructs in context evaluation dimension

Context Evaluation	Item		Cronbach's Alpha	Overall Value
Constructs			if	Cronbach's
			Item Deleted	Alpha
Teachers' views on Nationa	l	B1	0.941	
Education Philosophy		B2	0.940	
		В3	0.942	
		B4	0.939	
Teachers' views on MEB		B5	0.938	
(2013-2025)		В6	0.942	0.946
		В7	0.942	
Teachers' views on objective	2	B8	0.941	
PLC		В9	0.941	
	B10		0.944	
	B11		0.942	
	B12		0.942	

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

The findings of the factor analysis using Varimax rotation for context assessment dimension are presented in Table 4.

Table 4
Factor analysis findings with Varimax rotation for context evaluation dimension components

Component Matri	ix			
Item	1	2	3	
B5	0.889			
B4	0.840			
B2	0.816			
В9	0.800			
B1	0.797			
B8	0.793			
В7	0.788			
B12	0.778			
B11	0.776			
В3	0.766			
В6	0.759			
B10	0.711			

Based on Table 4, three factors extracted from context evaluation dimension component. The first factor comprises three items related to teachers' view on the National Education Philosophy (Items B1-B3), the second factor comprises three items on teachers' views on the Malaysian Education Blueprint (2013-2025) (Items B4-B6) and the third factor comprises five items on teachers' view on the objective of PLC (items B7-B12). All items in the three constructs of context evaluation were retained, indicating their significance in assessing the implementation of PLC among secondary school teachers.

c. Reliability and EFA for Input Evaluation

The input evaluation dimension, includes three constructs: teachers' views on Design Action Share (DAS) Strategy, teachers' views on PLC Kit and teachers' view on PLC implementation facility. The pilot study found that the Cronbach's Alpha values for all items in each construct more than 0.90. which suggests acceptable to very good reliability. There is no need to repeat the pilot study before administering the instrument to the actual sample (Ghazali & Sufean, 2018). Therefore, the items in this construct can be used in field studies. Additionally. Table 5 displays the Cronbach's Alpha values if the items are eliminated, as well as the overall Cronbach's Alpha for input assessment dimension constructs.

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

Table 5
Cronbach's Alpha values if items are deleted and overall Cronbach's Alpha for input assessment dimension constructs

Input Evaluation	Item		Cronbach's Alpha if	Overall Value
Constructs			Item Deleted	Cronbach's Alpha
Teachers' views on	С	1	0.966	
Design Action Share	C	C2	0.966	
(DAS) Strategy	C	C3	0.966	
	C	C4	0.966	
	C	C5	0.966	
	C	C6	0.966	
	C	C7	0.967	
	C	C8	0.967	
	C	. 9	0.965	
	C10		0.966	
Teachers' views on	C11		0.966	
PLC Kit	C12		0.966	0.067
	C13		0.966	0.967
	C14		0.966	
	C15		0.965	
	C16		0.966	
	C17		0.966	
	C18		0.965	
	C19		0.965	
	C20		0.966	
	C21		0.967	
	C22		0.966	
	C23		0.966	
	C24		0.966	
	C25		0.967	
Teachers' views on	C26		0,966	
PLC implementation	C27		0.966	
facility	C28		0.966	
	C29		0,969	

Based on Table 6, the analysis revealed three factors that were extracted from components. The factors are: (a) teachers' views Design, Action and Share (DAS) Strategy (10 Items: Items C1-C10) including ten items, (b) teachers' views on PLC Kit (15 Items: Items C11-C25) involving fifteen items and (c) teachers' views on PLC implementation facility (4 Items: Items C26-C29) comprising four items. Nevertheless, values factor loading for item C29 was less than 0.60. The researcher deleted item C29 from the questionnaire.

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

Table 6
Results of Varimax rotation factor analysis for input evaluation dimension components

		Com	ponent Matrix	
Item		1	2	3
	C18	0.865		
	C19	0.836		
	C15	0.833		
	C9	0.827		
	C2	0.804		
	C22	0.795		
	C13	0.782		
	C5	0.777		
	C20	0.767		
	C17	0.760		
	C3	0.756		
	C16	0.748		
	C1	0.738		
	C26	0.732		
	C4	0.732		
	C24	0.731		
	C27	0.728		
	C11	0.724		
	C10	0.722		
	C23	0.706		
	C6	0.705		
	C12	0.692		
	C25	0.676		
	C28	0,674		
	C14	0.667		
	C8	0.653		
	C7	0.643		
	C21	0.637		
	C29	0.534		

c. Reliability and EFA for Process Evaluation

The process evaluation dimension comprises four constructs; teachers' attitudes in implementing the PLC, teachers' knowledge of the PLC, the application frequency of collaborative tools and cooperation of administrators in the PLC implementation. The pilot study yielded a high Cronbach's Alpha value for the process evaluation dimension, exceeding 0.60, indicating reliable results. Consequently, there is no need to repeat the pilot study before administering the instrument to the actual sample. The items within this construct can be used in field studies. Table 7 presents both the overall Cronbach's Alpha for the process assessment dimension construct and the Cronbach's Alpha value if the items are removed, providing clear and concise information

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

Table 7
Cronbach's Alpha values if items are eliminated and overall Cronbach's Alpha for process evaluation dimension construct

Process Evaluation	Item	Cronbach's Alpha if	Overall Value
Constructs		Item Deleted	Cronbach's Alpha
Teachers' attitudes	D1	0.965	
towards	D2	0.965	
implementing the	D3	0.965	
PLC	D4	0.965	
	D5	0.965	
	D6	0.965	
Teachers' knowledge	D7	0.965	
improvement by	D8	0.965	
implementing PLC	D9	0.966	
	D10	0.966	
	D11	0.965	0.067
Application	D12	0.965	0.967
frequency of	D13	0.966	
collaborative tools	D14	0.965	
	D15	0.966	
	D16	0.966	
	D17	0.966	
	D18	0.966	
	D19	0.966	
	D20	0.965	
	D21	0.965	
	D22	0.966	
	D23	0.966	
Cooperation of	D24	0.966	
administrators in the	D25	0.965	
PLC implementation	D26	0.966	
	D27	0.965	
	D28	0.965	
	D29	0.965	
	D30	0.965	
	D31	0.965	

Table 8 revealed three factors that were extracted from the components. The factors are: (a) teachers' attitudes in implementing the PLC (6 Items: Items D1-D6) (b) teachers' knowledge of the PLC (5 Items: D7-D11) (c) application frequency of collaborative tools (12 Items: D12-D23) (d) cooperation of administrators in the PLC implementation (8 Items: D24-D31) Nevertheless, values factor loading for items D18, D22 and D24 were less than 0.60. The researcher deleted items D18, D22 and D24 from questionnaire.

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

Table 8
Factor analysis findings with Varimax rotation for process evaluation dimension components

Compo	Component Matrix					
Item		1	2	3	4	
D4		0.822				
D7		0.813				
D30		0.795				
D12		0.789				
D6		0.787				
D31		0.776				
D5		0.760				
D1		0.756				
D27		0.755				
D25		0.754				
D28		0.753				
D11		0.751				
D8		0.750				
D3		0.732				
D29		0.732				
D21		0.724				
D9		0.722				
D20		0.722				
	D2	0.717				
D14		0.699				
D26		0.687				
D15		0.679				
D10		0.673				
D16		0.649				
D13		0.640				
D19		0.638				
D23		0.635				
D17		0,610				
D22		0.573				
D18		0.570				
D24		0.564				

d. Reliability and EFA for Product Evaluation

The product evaluation dimension consists of three constructs, namely teachers' teaching skill improvement by implementing PLC, collaborative culture among teachers, and improving students' achievement by implementing PLC. The results of the internal consistency and reliability analysis for each construct are presented in Table 9. The pilot study revealed a high Cronbach's Alpha value for the product evaluation dimension, indicating excellent reliability. The findings indicate that all items within the construct have a minimum value exceeding 0.60, signifying acceptable to very good reliability. Hence, there is no requirement to replicate the pilot study before implementing the instrument in the actual sample. Consequently, the items within this construct can be utilized in the field study.

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

Table 9
Shows the Cronbach's Alpha values if the items are eliminated and the overall Cronbach's Alpha for the product evaluation dimension construct.

Product Evaluation Constructs	Item	Cronbach's Deleted	Alpha	if	Item	Overall Value Cronbach's Alpha
Teachers' view on teaching	E1	0.970				
skill improvement by	E2	0.971				
implementing PLC	E3	0.970				
	E4	0.970				
	E5	0.970				
Teachers' views on	E6	0.970				
collaborative culture	E7	0.969				
among teachers	E8	0.970				
	E9	0.970				0.972
	E10	0.970				
	E11	0.970				
	E12	0.972				
	E13	0.970				
Teachers' views on	E14	0.970				
improving students'	E15	0.970				
achievement by	E16	0.970				
implementing PLC	E17	0.970				
	E18	0.970				
	E19	0.970				

Table 10 presents the factor results for the product evaluation dimension component obtained through the Varimax (Rotated Component Matrix0 method with normality (Varimax with Kaiser Normalisation), which revealed four factors from the extracted product components.

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

Table 10 Factor results with Varimax rotation for product evaluation dimension components

Component l	Component Matrix				
Item	1	2	3		
E7	0,874				
E13	0.850				
E18	0.848				
E3	0.848				
E19	0.840				
E6	0.836				
E17	0.834				
E14	0.834				
E16	0.821				
E15	0.816				
E4	0.811				
E1	0.808				
E8	0,801				
E10	0.800				
E9	0,795				
E11	0.794				
E5	0,794				
E2	0.777				
E12	0,690				

Based on Table 11, three factors from the product evaluation dimension components were extracted. The factors are (a)teachers' teaching skill improvement by implementing PLC (5 Items: Items E1-E5), (b) collaborative culture among teachers (8 Items: Items E6-E13), (c) improving students' achievement by implementing PLC (6 Items: Items E14- E19). The conclusion is all items in the three constructs of product evaluation were retained.

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

Table 11
Shows all items in CIPP evaluation dimensions and items after the validity, reliability and EFA process.

Contex	t evaluation construct	Items before the validity and reliability	Item after the validity and reliability
Teache	rs' views on		
a)	National Education Philosophy	B1, B2, B3, B4	B1, B2, B3, B4
b)	MEB (2013-2025)	B5, B6, B7	B5, B6, B7
c)	objective PLC	B8, B9, B10, B11, B12	B8, B9, B10, B11, B12
Input e	valuation construct	Items before the validity and reliability	Item after the validity and reliability
Teache	rs' views on		
a)	Design Action Share (DAS) Strategy	C1, C2, C3, C4, C5, C6, C7, C8, C9, C10	C1, C2, C3, C4, C5, C6, C7, C8, C9, C10
b)	PLC Kit	C17, C18, C19, C20, C21, C22, C23, C24, C25	C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25
c)	PLC implementation facility	C26, C27, C28, C29	C26, C27, C28
Proces	s evaluation construct	Items before the validity and reliability	Item after the validity and reliability
Teache	rs' views on		
a)	attitudes of teachers towards implementing the PLC	D1, D2. D3, D4, D5, D6	D1, D2. D3, D4, D5, D6
a)	teachers' knowledge improvement by implementing PLC	D7, D8, D9, D10, D11	D7, D8, D9, D10, D11
b)	application frequency of collaborative tools	D12, D13, D14, D15, D16, D17, D18, D19, D20, D21, D22, D23	D12, D13, D14, D15, D16, D17, D19, D20, D21, D23
c)	cooperation of administrators in the PLC implementation	D24, D25, D26, D27, D28, D29, D30, D31	D25, D26, D27, D28, D29, D30, D31
Produc	t evaluation construct	Items before the validity and reliability	Item after the validity and reliability
Teache	rs' views on	-	
a)	teaching skill improvement by implementing PLC	E1, E2, E3, E4, E5	E1, E2, E3, E4, E5
b)	collaborative culture among teachers	E6, E7, E8, E9, E10, E11, E12, E13	E6, E7, E8, E9, E10, E11, E12, E13
c)		E14, E15, E16, E17, E18, E19	E14, E15, E16, E17, E18, E19
TOTAL		91 items	87 items

Discussion

The aim of this research was to develop a framework for evaluating the implementation of PLC in Malaysia. The efficacy of the proposed framework is contingent upon the quality of

Vol. 12, No. 2, 2023, E-ISSN: 2226-6348 © 2023

the study conducted. Currently, limited tools are available to assess the implementation of PLC. Therefore. an instrument to evaluate teachers' perceptions of PLC implementation was developed and tested. The study emphasized the importance of displaying the reliability and validity values of a questionnaire to inspire confidence in the quality of data collected by fellow researchers. The instrument was developed through literature reviews and previous instruments from PLC. The study found Cronbach Alpha to be between 0.946 and 0.972, which is considered acceptable for internal consistency, as the value must be above 0.7 (Hair et al., 2019) and a value higher than 0.80 is considered good (Koo et al., 2016). Items with a factor loading value of less than 0.6 are not significant to the construct measurement and can be removed (Zainuddin, 2015). Moreover, a factor loading value exceeding the minimum limit (0.6) is essential to identify the items used for one component, as suggested by (Hair et al., 2019; Hoque at al., 2017). Additionally, the relatively high factor loading value provides vital information on construct validity. The researchers' relevant interpretations were also evaluated.

Limitations of The Study

This study specifically focuses on evaluating the PLC among secondary school teachers in the State of Selangor. Hence, it is important to note that the results and conclusions derived from this study cannot be generalized to the entire country of Malaysia. The participants involved in this research were solely secondary school teachers within the State of Selangor. In future studies, it would be beneficial to incorporate data from schools in different states across Malaysia. The primary instrument employed in this study is a questionnaire, and therefore, the findings heavily rely on the respondents' honesty and sincerity when answering the questionnaire.

Conclusion

This study explores the teacher's thoughts on implementation of the PLC in secondary school. The findings present several key implications. Firstly, the study contributes to the improvement on detailed methods to test the level of questionnaire instrument in order to have high validity and reliability to be used in evaluating the implementation of PLC in schools. Secondly, the findings highlight that the implementation of PLC fosters a culture of collaboration and shared values among secondary school teachers. Thirdly, the results emphasize the role of PLC in promoting continuous professional development and increasing teacher accountability that leads to professional growth. Lastly, the findings underscore the importance of PLC in keeping teachers are collectively focused on students' success and continuously working to enhance their instructional practises. Overall, the implication of PLC among secondary school teachers has positive and transformative impact on instructional practises. student achievement and school environment. To obtain, more comprehensive formative and summative evaluations, it is essential to gather perspectives from diverse samples, especially from administration groups, headteachers, ministry officers and students. By incorporating these perspectives, a broader understanding of the impact of PLC can be achieved.

References

- Bahagian Pendidikan Guru. (2012). Pelan Pembangunan Profesionalisme berterusan (guru dan pemimpin sekolah). Putrajaya: Kementerian Pendidikan Malaysia.
- Blueprint Pelan Pembangunan Pendidikan Malaysia. (2013). Diperoleh daripada http://www.moe.gov.my/userfiles/file/PPP/Preliminary-BlueprintExecSummary-
- Creswell, J. (2015). Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research. New York: Pearson.
- Creswell, J. W. (2008). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (3rd ed.). Upper Saddle River, NJ: Pearson Education, Inc.
- Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Thousand Oaks, California: SAGE Publications, Inc.
- Cronbach, L. J. (1963). Course Improvement Through Evaluation. Teacher College Record. New York: Teachers College, Columbia University.
- DuFour, R., DuFour, R., & Eaker, R. (2008). Revisiting professional learning communities at work: New sight for improving schools (10th ed.). Bloomington, IN: Solution Tree Press.
- Kusaini, E. A. (2018). Tahap Kesediaan Guru Cemerlang Bahasa Melayu Terhadap Pelaksanaan Komuniti Pembelajaran Profesional Di Sekolah Menengah Di Negeri Melaka. Jurnal Pendidikan Bahasa Melayu-JPBM, 8(Mei), 63–73.
- Yahya, F. (2016). Penilaian Kurikulum Sains Program Ijazah Sarjana Muda Perguruan. Universiti Teknologi Malaysia, Johor.
- Darusalam, G., & Hussin, S. (2018). Metodologi Penyelidikan Dalam Pendidikan: Amalan dan Analisis Kajian.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2013). Multivariate data analysis: Pearson new international edition. Pearson Higher Ed.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis (7th ed.). Pearson.
- Hair, J. F. (2006). Multivariate Data Analysis. Pearson Prentice Hall.
- Hipp, D., & Huffman. (2000). How Leadership Is Shared and Visions Emerge In The Creation Of Learning Communities. Paper presented at the annual meeting of the American Education Research Association, New Orleans, April.
- Hoque, A. S. M. M., Awang, Z., Jusoff, K., Salleh, F., & Muda, H. (2017). Social business efficiency: Instrument development and validation procedure using structural equation modeling. International Business Management, 11(1), 222-231.
- Hord, S., & Sommers. (2008). Leading Professional Learning Communities: Voice From Research And Practice. New York: McGraw-Hill Inc.
- Hord, S. M., & Sommers, W. A. (2007). Leading professional learning communities: Voices from research and practice. Corwin Press.
- Hord, S. M. (2004). Learning together, leading together: Changing schools through professional learning communities. Teachers College Columbia University.
- Hord, S. (1997). Professional Learning Communities: Communities of Continuous Inquiry and Improvement. SEDL.
- Ismail, S. N., Abdullah, Z., Othman, A. J., & Shafie, S. (2018). Amalan Komuniti Pembelajaran Profesional Dalam Kalangan Guru Bahasa Melayu di Selangor. Jurnal Kepimpinan Pendidikan, 5(4), 19.
- Kementerian Pendidikan Malaysia. (2013). Pelan Pembangunan Pendidikan Malaysia 2013-2025.

- Kementerian Pendidikan Malaysia. (2014). Pelan Pembangunan Profesionalisme Berterusan (Guru dan Pemimpin Sekolah) Edisi 2014. Kementerian Pendidikan Malaysia.
- Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155-163. doi: 10.1016/j.jcm.2016.02.012
- Shuib, S., & Jumahat, T. (2020). Amalan Komuniti Pembelajaran Profesional dan Efikasi Kendiri Guru Sekolah Menengah Kebangsaan di Selangor dan Putrajaya. Institusi Aminuddin Baki Cawangan Genting Highlands, Pahang.
- Sekaran, U., & Bougie, R. (2016). Research Methods for Business: A Skill-Building Approach (7th ed.). Wiley & Sons.
- Sekaran, U. (2000). Research methods for business: A skill-building approach (3rd ed.). John Wiley & Sons, Inc.
- Senge, P. M., Cambron-McCabe, N., Lucas, T., Smith, B., & Dutton, J. (2012). Schools that learn: A fifth discipline fieldbook for educators, parents, and everyone who cares about education. Crown Publishing Group.
- Senge, P. M. (1990). The Fifth Discipline: The Art and Practice of the Learning Organization.

 Random House Australia.
- Ismail, S. N. (2019). Reka bentuk model komuniti pembelajaran profesional dan pengajaran berkesan guru bahasa melayu Malaysia. Universiti Malaya, Kuala Lumpur.
- Stufflebeam, D. L. (1975). Evaluation as enlightenment for decision-making. In B. R. Worthen & J. R. Sanders (Eds.), Educational Evaluation: Theory and Practice. Charles A Jones Publishing Company.
- Stufflebeam, D. L., Folely, W. J., Gephart, W. J., Guba, E. G., Hammond., Merriman, H. O., & Provus, M. M. (1971). Educational Evaluation and Decision Making. F.E. Peacock.
- Stufflebeam, D. L., & McKee, H. (2003). The CIPP model for evaluation. Materi presentasi pada konferensi tahunan Oregon Program Evaluators Network (OPEN) tahun 2003.
- Stufflebeam, D. L. (2000). Lessons in Contracting for Evaluations. American Journal of Evaluation, 21, 293-314.
- Fitzpatrick, J. L., Sanders, J. R., & Worthen, B. R. (2004). Program Evaluation: Alternative Approaches and Practical Guidelines. Pearson Education, Inc.
- Awang, Z. (2012). Research Methodology and Data Analysis (2nd ed.). UiTM.
- Awang, Z. (2015). A Gentle Approach to Learning Structural Equation Modelling. MPWS Rich Publication.
- Zuraidah A. (2016). Komuniti pembelajaran profesional di Malaysia: Amalan penambahbaikan sekolah. Penerbit Universiti Malaya.
- Abdullah, Z. (2010). Profil Komuniti Pembelajaran Profesional Sekolah Menengah Di Malaysia. Unpublished doctoral dissertation, Institute of Educational Leadership, University of Malaya.