
252 

Urban Resilience in the Face of Natural Hazards: 
Leveraging Machine Learning to Assess Landslide 

Risk in Kuala Lumpur, Malaysia 
 

Syaidatul Azwani Zulkafli & Nuriah Abd Majid  
Institute Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 

Bangi, Selangor, Malaysia 
Corresponding Author Email: nuriah@ukm.edu.my 

Abstract 
Landslides represent a significant threat to urban areas globally, causing substantial loss of 
life, property damage, and infrastructure disruption. The rapid urbanization witnessed in 
Kuala Lumpur, Malaysia since the 1970s has heightened the susceptibility to landslides, driven 
by factors such as vegetation removal and slope cutting. This study employs logistic regression 
(LR), a supervised machine learning technique, to develop a landslide model for Kuala 
Lumpur. LR is chosen for its simplicity and effectiveness in landslide susceptibility mapping. 
The methodology involves collecting and pre-processing landslide inventory data, extracting 
relevant factors from geospatial data, and applying LR to model the relationship between 
landslides and these factors. The resulting model is validated using an independent landslide 
dataset, demonstrating a good overall accuracy of 74.1%, with a sensitivity of 84.7% and 
specificity of 63.5%. The study concludes that LR serves as a valuable tool for landslide hazard 
assessment and risk management in Kuala Lumpur. The developed model offers guidance for 
land-use planning and infrastructure development, contributing to Sustainable Development 
Goal (SDG) 11 by fostering inclusive, safe, resilient, and sustainable cities. By mitigating 
landslide risk, the model contributes to the protection of lives and livelihoods, promotes 
sustainable urbanization, and enhances Kuala Lumpur's resilience to natural hazards. 
Keywords: Landslide, Geographic Information System (GIS), Logistic Regression (LR), Urban, 
Malaysia. 
 
Introduction 
Natural hazards, particularly landslides appeal as the 3rd most notorious disaster in the world 
imparting severe damages and necessitating extensive mitigation methods (Zillman, 1999). 
Landslide impacts can vary depending on their severity. Most of the time, landslide brings 
crucial fatalities, injuries, and property loss (Mahmud et al., 2013). For years, landslides have 
affected nearly 4.8 million people, and more than 18,000 deaths were caused by landslides 
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between 1998 to 2017 (World Health Organization, 2022). According to NASA, there were 
more than 8,935 landslides that took place around the world with approximately 1,120 cases 
recorded in Southeast Asia. 
Before this, Malaysia had experienced multiple landslides. In regions where steep terrain and 
urban residential areas coexist as in many parts of Malaysia, the risk is higher for their physical 
environment and socio-economy. Heavy rainfall and significant ground shaking when 
integrated with anthropogenic and other spatial interactions were deemed major 
contributors to landslides (Suzen and Kaya, 2011). Landslides in developing countries, 
however, have a high and wide range impact due to rapid urbanization trends as it is highly 
associated with the changes in landscape patterns (Althuwaynee et al., 2015; Saadatkhah et 
al., 2014). Recently, netizens were left in shock by four deaths following a major landslide in 
Taman Bukit Permai 2. Unfortunately, that was not the first case involving tragic demise. 
Malaysia had also experienced a few major landslides back in the day. The infamous Highland 
Tower collapsed due to significant human errors that claimed 48 lives (Kazmi, et al., 2017; 
Sardi and Razak, 2019; Zubaidi, et al., 2020). Bukit Antarabangsa held a record as the second 
most horrific landslide in 2008 at only 1.4 km away from Highland Tower. These horrific events 
indirectly suggest that landslides have continually occurred in the main cities, such as Kuala 
Lumpur ever since the development started taking place in the 1970s. On top of that, as Kuala 
Lumpur achieved a 100% rate of urbanization, this area often involves the modification of 
natural topography, such as removing vegetation, cutting slopes, and depressions from the 
land surface which later leads to slope instability. High demand for housing also forced new 
residences to be built on high terrains, inflating the pressure of the ground due to the heavy 
materials (Pradhan and Lee, 2010; Azmi et al., 2013). Zulkafli and Abd Majid (2020) stated 
that a total of 17 landslide events had taken place in 2010 resulting in the highest number of 
cases that occurred in a year. However, during the final quarter of 2021 and early 2022, there 
were nine out of 115 locations were categorized as critical (Ahzan, 2022).  
Therefore, landslide susceptibility mapping is crucial for urban and land management to 
prevent such disasters, particularly in high-density populated areas. Landslide susceptibility 
assessment is a complex process as it requires an in-depth analysis of the spatial relationship 
between various landslide factors and landslide occurrences (Sujatha and Sridhar, 2021). 
Based on local terrain, a region's susceptibility to landslides is the probability that a landslide 
would occur in certain areas (Tebar et al., 2022). Landslide susceptibility can be measured by 
different factors, such as geological, morphological, or human factors (Table 1) as landslides 
are influenced by one or more factors and occasionally correspond to one another (Leonardi 
et al., 2022; Leonardi et al., 2020). According to (Budimir et al., 2015), many studies used 
factors to predict susceptibility that is relatively stable, namely geology, slope, aspect, and 
vegetation. These factors modify landscapes over a longer period. Hence, this study will not 
be using the rainfall measurement factor as it acts on a much shorter time frame. 
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Table 1 
Landslide Factors Classification by Varnes (1984) 

Geological Morphological Human 

Weak or sensitive 
materials 

Tectonic or volcanic uplift 
Excavation of slope or its 

toe 
Weathered materials Glacial rebound Loading of slope or its crest 
Sheared, jointed, or 
fissured materials 

Fluvial, wave, or glacial erosion of 
slope toe or lateral margins 

Drawdown (of reservoirs) 

Adversely oriented 
discontinuity 

Subterranean erosion (solution, 
piping) 

Deforestation 

The contrast in 
permeability and/or 
stiffness of materials 

Deposition loading slope or its 
crest 

Irrigation 

Vegetation removal (by fire, 
drought) 

Mining 

Thawing Artificial vibration 
Freeze-and-thaw weathering 

Water leakage from utilities 
Shrink-and-swell weathering 

 
Although accurately predicting landslide occurrences remains the greatest challenge to this 
day, landslide susceptibility mapping is still crucial for urban and land management to prevent 
such disasters, especially in high-density populated areas (Alcantara-Ayala et al., 2017). 
Therefore, in today’s established technologies, machine learning (ML) techniques provide 
solutions as ML produces predictions, performs clustering, extracts association features, and 
makes decisions from given information, which are coming to the fore (Ma et al., 2020). ML 
can be categorized into supervised and unsupervised learning. In supervised learning, 
classification and regression are two types of problems in data mining where classification 
problems use an algorithm to accurately assign test data into specific categories, including 
support vector machines, decision trees, and random forests, while, regression problems use 
an algorithm to understand the relationship between dependent and independent variables 
(Delua, 2021). The commonly used regressions in landslide studies are linear regression and 
logistic regression. On the other hand, unsupervised learning models are used for three main 
tasks: clustering, association, and dimensionality reduction. These two approaches convey a 
distinct difference as supervised learning uses labeled input and output data, while an 
unsupervised learning algorithm does not. The versatility of ML approaches, together with 
the quantity of landslide-related data acquired over time, has made ML a commonly utilized 
analytic tool for modeling complex landslide problems by weighting its factors (Ma et al., 
2020; Tehrani et al., 2021; Li et al., 2022). Hence, to analyze the relationship between the 
landslide occurrences and the contributing factors that were later used to develop a landslide 
susceptibility map, a supervised algorithm, Logistic Regression (LR) is employed in this current 
study. 
LR is one of the most used multivariate analyses in constructing a landslide susceptibility map, 
which is significant for classifying landslide susceptibility classes (Reichenbach et al., 2018; 
Sekarlangit et al., 2022). Furthermore, LR is also a supervised learning algorithm that uses a 
logistic function to map the input variables to categorical dependent variables. LR has been 
established and proven to be highly reliable for assessing landslide susceptibility, providing 
larger area coverage (Nwazelibe et al., 2023).  
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Study area and Materials 
Area of Interest, Kuala Lumpur, Malaysia 
Malaysia’s capital city, Kuala Lumpur is located at 3.1390° N, 101.6869° E covering an area of 
approximately 243 km2 with an average elevation of 81.95 m (Figure 1). According to the 
World Population Review (2020), Kuala Lumpur is divided into districts comprising nearly 8 
million population and is predicted to rise to 9 million in another decade. In Kuala Lumpur, 
the hottest month is March with an average temperature of 28°C (82°F), while the coldest 
month is January with a temperature of 27°C (81°F) (Holiday Weather, 2022). However, Kuala 
Lumpur was one of the regions in Malaysia that experienced severe impact when the Air 
Pollution Index (API) exceeded 200 due to the haze conditions increase in the number of hot 
spots in 2019 (Annual Report, 2019). Kuala Lumpur is widely known for its diverse landmarks, 
including Petronas Twin Towers and KL Tower. Kuala Lumpur has become one of the most 
efficient regions to migrate to over the years as it provides economic opportunities and 
employment. As of today, internal migration can be seen as a bigger issue because it 
contributes to the rising population size thus leading to immense urban growth. To 
accommodate sufficient space for the migrants, urbanization in the Kuala Lumpur area has 
become a concern to nature as overdevelopment is one of the factors of landslides. 

 
Figure 1. Study area map, Kuala Lumpur, Malaysia. 
 
Data Preparation 
A landslide inventory contains the primary input of the location of past and recent landslides. 
In this study, the inventory was prepared through past studies records, reports, and Google 
Earth image interpretation which then went through several field surveys for validation across 
distinct boundaries. A total of 100 landslides were identified across the area, most 
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concentrated in the Northwest and center parts of Kuala Lumpur. Another 100 random 
datasets representing non-landslide points were also created using create random points 
analyst in ArcGIS 10.8.2 software. 
In the meantime, there are no guidelines for selecting landslide factors (Ayalew et al., 2005; 
Yalcin, 2008; Chen et al., 2018). Therefore, landslide causative factors were generally selected 
based on their influence on landslide occurrences in the selected study area, scientific 
literature, and data availability (Table 1). In this study, there were eight causative parameters 
considered in influencing landslides, including distance density factors (roads, rivers, and 
faults), topography factors (slope angle, slope aspect, and curvature) lithology type, and land 
use type.  
 
Digital Elevation Model (DEM) 
To analyze terrain characteristics, a 30-meter by 30-meter digital elevation model (DEM) was 
constructed using a contour map obtained from the Department of Survey and Mapping 
Malaysia. This DEM was generated within ArcGIS software using the 3D Analyst extension. 
Subsequently, the DEM was utilized to derive the slope angle (Figure 2(a)) and slope aspect 
(Figure 2(b)) for further analysis. In Malaysia, slopes have been classified into four categories 
since 2002, constructed by The Department of Minerals and Geoscience Malaysia (JMG) as 
official guidelines on hillside development (Gue and Wong, 2009). Slopes ranging below 15° 
were classified as Class I meanwhile Class II slopes were determined between 15° to 25°. On 
the other hand, Class III was reserved between 25° to 35 °, and any slope angle greater than 
35° was classified as Class IV. Thus, this study also classified slopes into the stated classes. The 
slope angle is a measure of the steepness of a slope. It is calculated as the angle between the 
slope and a horizontal plane. In the context of landslides, slope angle is an important factor 
because it can influence the stability of a slope. Landslides are more likely to occur on slopes 
with steeper angles. This is because the weight of the overlying material is greater on steeper 
slopes, which can put more stress on the underlying material and make it more likely to fail. 
The slope aspect is one of the crucial landslide-influencing factors considered in most studies. 
 
Distance to Roads 
Roads and highways data were sourced from an open database, comprising polylines 
spanning across the entirety of Kuala Lumpur. Utilizing ArcGIS 10.8.2 software, an analysis 
employing Euclidean distance measurement was conducted to generate a thematic map 
illustrating the proximity of various locations to roads. The resulting map was categorized into 
five distinct classes using a natural breaks classification method. The distance to roads 
emerges as a significant factor in this study's landslide analysis, given Kuala Lumpur's intricate 
network of highways and road infrastructure (as depicted in Figure 2(c)). 
 
Distance to Rivers 
The study utilized river network data obtained from the Department of Irrigation and 
Drainage (DID) in the form of polylines. These polylines represent the branches of the river 
network and water bodies across Kuala Lumpur, including the Klang River, Gisir River, 
Kerayong River, Bunus River, Belongkong River, Gombak River, and Jinjang River. The river 
network data plays a crucial role in landslide susceptibility modeling, as the proximity to rivers 
and water bodies can influence landslide occurrence (Hervas et al., 2017).To incorporate the 
river network data into the landslide susceptibility model, an Euclidean distance analysis was 
performed (Burrough & McDonnell, 1998). This analysis calculates the distance from each 
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pixel location in the study area to the nearest river or water body. The resulting distance map 
represents the physical relationship between the terrain and the river network, providing 
valuable information for assessing landslide susceptibility. The Euclidean distance analysis 
was chosen for its simplicity and effectiveness in capturing the spatial relationship between 
the study area and the river network (Figure 2(d). Other distance measures, such as 
Manhattan distance and geodesic distance, could also be considered depending on the 
specific characteristics of the study area and the desired level of accuracy (Wang et al., 2018). 
 
Distance to Faults 
Kuala Lumpur’s fault lines were extracted from the geological map provided by the 
Department of Mineral and Geoscience Malaysia.  Distance to faults is a measure of how close 
a location is to a known fault line. Fault lines are areas where the Earth's crust is fractured 
and can move relative to each other. Earthquakes can occur when these fault lines move, and 
the closer a location is to a fault line, the more likely it is to experience an earthquake. In the 
context of Kuala Lumpur, Malaysia, distance to faults is an important factor to consider when 
assessing earthquake hazards. The city is located in a seismically active region, and there are 
several active faults in the area. The Kuala Lumpur Fault, for example, is a major strike-slip 
fault that runs through the city center. The Department of Mineral and Geoscience Malaysia 
has published a geological map of Peninsular Malaysia that shows the location of known fault 
lines. This map can be used to calculate the distance to faults for any location in Kuala Lumpur. 
For example, the distance to the Kuala Lumpur Fault for a location at 3.1450° N, 101.6850° E 
is approximately 0.0064 kilometers. This means that the location is very close to the fault line 
and is at high risk of experiencing an earthquake. The Department of Mineral and Geoscience 
Malaysia also has provided a geology map used to extract lithology types (Figure 2(e)). 
 
Lithology 
Figure 2(f), which depicts lithology, it is evident that landslide occurrences in Kuala Lumpur 
are primarily associated with sandstone, accompanied by subordinate shale, mudstone, 
siltstone, conglomerate, and volcanic materials. The shale and sandstone, originating from 
sedimentary rocks within the Kenny Hill formation, have undergone weathering and 
metamorphosis, resulting in the formation of metasediments such as schist, quartzite, and 
phyllite (Sanusi et al., 2017). Lithological profiles of the acidic intrusive region, commonly 
referred to as the Kuala Lumpur granite, exhibit a predominant orientation from the 
northwest to the southeast, with some areas being surrounded by limestone lithology in the 
southwest of the study area. Furthermore, similar lithological profiles can be sporadically 
found in the upper northwest and southeast, with some portions surrounded by limestone to 
the southwest. Landslide incidents associated with schist and gneiss are less prevalent in the 
southeast region of Kuala Lumpur. Conversely, a significant proportion of reported landslide 
incidents occur in areas characterized by limestone lithology, locally known as the Kuala 
Lumpur Limestone. This limestone terrain is marked by a thin topsoil layer supporting 
vegetation, underlain by alluvial soil rich in heavy minerals and tin-bearing soil. Extensive 
quarrying activities on slopes and cliffs over recent decades, primarily for limestone extraction 
as a primary construction material, have posed significant threats to the stability of the soil 
layers in this region (Althuwaynee & Pradhan, 2017). 
 

Soil Series  
In Kuala Lumpur, there are several types of soil series, including mined land, Munchong 
Seremban, Rongam Jorangau, Serdang Kedah, Steepland, Telemong-local alluvium, and urban 
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land. (Figure 2(g).A diverse range of soil series exists, each contributing to the city's unique 
landscape and environment. One prominent type is mined land, where soil composition has 
been significantly altered due to past mining activities, resulting in distinct characteristics. 
Additionally, the Munchong Seremban and Rongam Jorangau soil series are notable, each 
exhibiting specific profiles and properties that contribute to their identification within the 
region. Serdang Kedah soil, named after its prevalent area, also plays a role in Kuala Lumpur's 
soil diversity. Furthermore, areas characterized by steep slopes often have steepland soil, 
influenced by erosion patterns and nutrient distribution. Telemong-local alluvium, formed 
from sediment deposition by local rivers, is common in low-lying areas and floodplains. 
Finally, urban land soil represents areas impacted by human activities, such as construction 
and pollution, resulting in unique soil characteristics compared to rural environments. 
Together, these various soil series contribute to the dynamic landscape and environmental 
diversity of Kuala Lumpur. 
 
Land use 
The land use elements in the northwest to northeast areas of Kuala Lumpur exhibit a higher 
level of safety compared to those in the western and southern regions (Figure 2(h)). Urban 
areas with dense populations, including residential, commercial, industrial, and utility zones, 
experienced the highest percentages of land use elements affected by landslides 
(Althuwaynee & Pradhan, 2017). The proliferation of residential constructions on hilltops has 
increased significantly due to the scarcity of flat land (Gue & Tan, 2003), which may lead to 
alterations in water drainage patterns from highland to lowland areas in the future. 
Furthermore, it is observed that the occurrence of landslides is greatly influenced by the 
lithological characteristics of the land surface (Dhianaufal et al., 2018). 
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Figure 2. Physical characteristics of landslide factors 
 
Logistic Regression (LR) 
Logistic Regression (LR) is a statistical method widely used in various fields, including landslide 
susceptibility mapping. It's a multivariate analysis technique that establishes a relationship 
between a binary dependent variable (landslide occurrence or non-occurrence) and a set of 
independent variables (landslide causative factors). LR is particularly well-suited for landslide 
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susceptibility mapping due to its ability to handle multiple input factors and generate 
probability estimates for landslide occurrence. 
Mathematical Representation: 
LR employs a logistic function to transform a linear combination of independent variables (X1, 
X2, ..., Xn) into a probability value between 0 and 1. The probability of landslide occurrence 
(P) is represented by: 
 
 

𝑃 =
1

1 + (𝑒𝑥𝑝−𝑧)
 

 
• P: Probability of landslide occurrence 
• Z: Linear combination of causative factors 

 
where 𝑃 is the probability of landslide occurrence and 𝑍 a linear combination of casual 𝑋𝑖 
factors. Z can be expressed as 

𝑍 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 +⋯𝛽𝑛𝑋𝑛 
 

• β0: Constant term 
• βi: Coefficient associated with the ith independent variable (Xi) 

The coefficients (βi) represent the strength and direction of the relationship between each 
causative factor and landslide occurrence. Positive coefficients indicate a positive 
relationship, while negative coefficients imply a negative relationship. In landslide 
susceptibility mapping, LR is employed to analyze a set of landslide inventory data and a 
collection of landslide causative factors. The landslide inventory data consists of locations 
where landslides have occurred, while the causative factors represent various environmental 
and geological conditions that contribute to landslide susceptibility.  
LR is trained using the landslide inventory data to determine the coefficients (βi) for each 
causative factor. These coefficients represent the relative importance of each factor in 
influencing landslide occurrence. Once the coefficients are determined, the LR model can be 
used to predict landslide susceptibility for any location within the study area. Logistic 
regression (LR) has emerged as a prominent statistical method for landslide susceptibility 
mapping due to its effectiveness in handling multiple input factors and generating probability 
estimates of landslide occurrence. LR offers several distinct advantages over other 
susceptibility mapping techniques, making it a preferred choice among researchers (Akgün 
and Turkmenoglu, 2004; Pradhan, 2008; An et al., 2010). 
One of the primary advantages of LR lies in its interpretability (Akgun and Turkmenoglu 2004). 
LR provides a direct interpretation of the relationship between landslide causative factors and 
landslide occurrence through the coefficients (βi) obtained in the model. These coefficients 
represent the relative importance of each factor in influencing landslide susceptibility, 
allowing researchers to gain insights into the underlying mechanisms of landslide occurrence 
(Pradhan, 2008; An et al., 2010). 
LR ability to handle multiple independent variables makes it particularly well-suited for 
landslide susceptibility mapping, as landslide occurrence is often influenced by a complex 
interplay of environmental and geological factors (Akgun and Turkmenoglu, 2004; Pradhan, 
2008; An et al., 2010). LR can effectively analyze a large number of causative factors, including 
elevation, slope angle, land use, rainfall, and distance to faults, providing a comprehensive 
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assessment of landslide susceptibility (Akgun and Turkmenoglu, 2004; Pradhan, 2008; An et 
al., 2010). 
Unlike binary classification methods, LR generates probability estimates for landslide 
occurrence, providing a more nuanced assessment of landslide susceptibility (Pradhan 2008; 
An et al. 2010). These probability estimates allow researchers to identify areas with varying 
degrees of landslide risk, enabling more targeted planning and risk mitigation strategies 
(Pradhan, 2008; An et al., 2010). Logistic regression remains a valuable tool for landslide 
susceptibility mapping due to its interpretability, ability to handle multiple factors, and 
probability estimation capabilities. However, it's essential to consider its limitations and 
carefully evaluate the quality of the data and the choice of causative factors to ensure the 
robustness of the LR model. 
 
Results 
Table 1 presents the results of a logistic regression model aimed at predicting landslide 
occurrences based on diverse factors. The Classification Table assesses the model's 
performance comprehensively by comparing observed and predicted values. The model 
accurately predicted 87 cases of no landslides (0) and correctly identified 116 instances of 
actual landslides (1). However, it inaccurately predicted 21 cases of landslides in the "No 
Landslide" category and 50 cases of no landslides in the "Landslide" category. The overall 
correct prediction percentage stands at 74.1%, underscoring the model's accuracy in 
evaluating landslide factors. The mentioned cut value of 0.500 serves as a threshold: 
predicted probabilities exceeding this value are classified as landslides, while those below are 
labeled as no landslides. This table provides crucial insights into the logistic regression model's 
effectiveness in predicting landslides, emphasizing the necessity for a nuanced interpretation. 
The overall percentage, also termed the accuracy rate, gauges the logistic regression model's 
proficiency in predicting correct outcomes across observations. Calculated by dividing 
correctly classified observations by the total, the 74.1% overall percentage denotes the 
model's accurate classification of 74.1% of all landslides and non-landslides. This high 
accuracy rate suggests the model's reasonable effectiveness in predicting landslides. 
However, it's imperative to note that the overall percentage isn't the sole performance 
measure; sensitivity, specificity, and precision are equally crucial. Sensitivity, representing the 
correctly classified proportion of landslides, is at 84.7%, signifying the model's adept 
identification of 84.7% of actual landslides. Specificity, reflecting the correctly classified 
proportion of non-landslides, stands at 63.5%, indicating the model's accurate identification 
of 63.5% of actual non-landslides. Precision, the proportion of model-classified landslides that 
are actual landslides, is at 50%, implying that half of the model-classified landslides were 
indeed landslides. In summary, the logistic regression model appears reasonably effective for 
predicting landslides. The 74.1% overall accuracy rate is high, and the 84.7% sensitivity 
underscores the model's proficiency in identifying actual landslides. Nevertheless, the 63.5% 
specificity suggests a tendency for false positives, potentially causing unnecessary alarm or 
resource wastage. 
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Table 1 
Logistic Regression Model Percentage on Landslide Factors 

Classification Table 

 Observed 

Predicted 

Landslide 
Percentage Correct 

0 (No Landslide) 
1 

(Landslides) 

Step 1 
Landslide 

0 87 50 63.5 

1 21 116 84.7 

Overall Percentage   74.1 

a. The cut value is .500 

 
Table 2 presents a detailed examination of the statistical significance of various factors in the 
logistic regression model, gauged through the reported significance values (Sig.). These values 
play a crucial role in determining the influence of each variable on the model's predictive 
capability and the likelihood of its impact on landslide occurrences. Aspect Value (Asp_Val) 
and Curvature Value (Curv_Val) exhibit non-significant p-values of 0.292 and 0.328, 
respectively, suggesting that these variables may not significantly contribute to the model's 
ability to predict landslides. Conversely, Slope Value (SL_Val) has a notably low p-value of 
0.031, indicating statistical significance and implying a substantial impact on the model's 
predictive power. Forestation Value (F_Val) and Ridge Value (Ri_Val) exhibit higher p-values 
of 0.994 and 0.240, respectively, suggesting that they may not be statistically significant 
predictors of landslide occurrences. In contrast, Rock Value (Ro_Val) demonstrates a low p-
value of 0.022, signifying its statistical significance and implying a meaningful influence on 
landslide predictions. The p-values associated with Land Use Value (LU_Val) and its 
subcategories (LU_Val(1), LU_Val(2), LU_Val(3)) are generally high, with an overall p-value of 
0.416. This indicates that, as a categorical variable, land use might not significantly impact the 
model. Similar observations are made for Soil Value (Soil_Val), with an overall p-value of 
0.971, suggesting limited statistical significance. However, specific soil categories, like 
Soil_Val(3), exhibit a p-value of 1.000, indicating a lack of statistical significance. Lithology 
Value (Lit_Val) displays varying p-values across its categories, with Lit_Val(1) and Lit_Val(2) 
showing highly significant values (<.001), indicating their substantial impact on predicting 
landslides. Rainfall Value (RF_Val) demonstrates a marginal p-value of 0.086, suggesting 
moderate significance in influencing landslide predictions. The Constant term exhibits a p-
value of 1.000, as anticipated, indicating its lack of statistical significance. In summary, the 
significance values elucidate the relative importance of each factor in the logistic regression 
model. Variables like Slope Value and Rock Value emerge as statistically significant 
contributors, while others, such as Forestation Value and certain Land Use and Soil categories, 
may have limited impact. These findings guide further exploration and prioritization of 
influential factors in landslide risk assessment and mitigation planning. 
= 
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Table 2 
Significant Values of Each Factor 

 B S.E. Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1a Asp_Val .001 .001 .292 1.001 .999 1.004 

Curv_Val -.344 .352 .328 .709 .356 1.412 

SL_Val .051 .024 .031 1.053 1.005 1.103 

F_Val .000 .000 .994 1.000 1.000 1.000 

Ri_Val .001 .001 .240 1.001 1.000 1.002 

Ro_Val -.003 .001 .022 .997 .994 1.000 

LU_Val   .416    

LU_Val(1) 22.077 18281.917 .999 3871942575.409 .000 . 

LU_Val(2) 20.066 18281.917 .999 518187909.341 .000 . 

LU_Val(3) 20.442 18281.917 .999 754478461.636 .000 . 

Soil_Val   .971    

Soil_Val(1) 1.225 1.943 .528 3.404 .076 153.342 

Soil_Val(2) .435 1.397 .756 1.544 .100 23.890 

Soil_Val(3) -18.943 40192.970 1.000 .000 .000 . 

Soil_Val(4) .004 2.027 .998 1.004 .019 53.393 

Lit_Val   <.001    

Lit_Val(1) -1.900 .481 <.001 .150 .058 .384 

Lit_Val(2) .672 .392 .087 1.958 .907 4.225 

Lit_Val(3) -.785 .525 .135 .456 .163 1.277 

RF_Val -.004 .002 .086 .996 .992 1.001 

Constant -11.035 18281.918 1.000 .000   

 
Discussion  
The outcomes of the logistic regression model's significance values offer a nuanced discussion 
regarding the influential factors in predicting landslide occurrences. Analyzing these values is 
pivotal for understanding the statistical importance of each variable and its overall impact on 
the model's performance. Examining the specific results reveals key insights. Firstly, the slope 
value (SL_Val) emerges as a significant predictor, with a p-value of 0.031, indicating that 
terrain inclination significantly influences landslide predictions, aligning with geological 
expectations. Similarly, the rock value (Ro_Val) is identified as a substantial predictor with a 
low p-value of 0.022, suggesting that geological composition, particularly the presence of 
rock, plays a crucial role in determining landslide occurrences. On the other hand, curvature 
value (Curv_Val) and aspect value (Asp_Val) do not exhibit statistical significance with p-
values of 0.328 and 0.292, respectively, suggesting that these terrain features may not be 
strong predictors of landslides in the studied context.  Categorical variables like land use value 
(LU_Val) and soil value (Soil_Val) show relatively high p-values of 0.416 and 0.971, indicating 
that, as a whole, they may not significantly contribute to the model. Notably, the lack of 
statistical significance for specific categories within Soil_Val (3) further emphasizes the 
nuanced impact of individual categories within these variables. 
Lithology value (Lit_Val) stands out as an influential factor, particularly Lit_Val(1) and 
Lit_Val(2), with highly significant p-values of <.001. This suggests that certain lithological 
characteristics significantly impact landslide occurrences, underscoring the importance of 
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geological composition in landslide prediction. Rainfall value (RF_Val) demonstrates a 
marginally significant p-value of 0.086, implying that precipitation may play a moderate role 
in landslide predictions, aligning with established knowledge that heavy rainfall can trigger 
landslides. Variables such as forestation value (F_Val) and ridge value (Ri_Val) exhibit high p-
values of 0.994 and 0.240, respectively, suggesting that these factors may not be statistically 
significant in predicting landslides in the studied model. Understanding the statistical 
significance of these factors provides crucial insights for prioritizing interventions and 
mitigation strategies. Variables like slope and rock value, deemed statistically significant, 
become focal points for targeted measures. Conversely, factors with less predictive power, 
such as land use and soil type, may guide resource allocation toward more influential 
predictors. The nuanced interpretation of significance values enhances the practical 
applicability of the model's findings in real-world landslide risk assessment and management, 
allowing for tailored interventions based on the specific characteristics of the study area. 
Overall, this discussion underscores the importance of considering individual factors' 
statistical significance in crafting effective strategies for landslide prediction and mitigation. 
 
Conclusion 
In conclusion, this study employed a logistic regression model to analyze various factors 
influencing landslide occurrences. The significance values derived from the model shed light 
on the relative importance of these factors, offering valuable insights for real-world 
applications in landslide risk assessment and management. The statistically significant 
variables, such as Slope Value and Rock Value, provide actionable information for prioritizing 
interventions. Steeper slopes and areas with certain lithological characteristics demand 
heightened monitoring and targeted mitigation strategies. These findings empower decision-
makers to allocate resources efficiently and implement contextually relevant measures, 
enhancing the resilience of communities to landslide hazards. Conversely, variables with 
higher p-values, such as Land Use Value and Soil Value, may have less predictive power in the 
specific context studied. While these factors should not be disregarded, the study suggests 
that their influence on landslide occurrences may be limited. This nuanced understanding 
allows for a more strategic allocation of resources, focusing efforts on factors with greater 
impact. 
The study's findings emphasize the importance of tailoring mitigation strategies to the specific 
characteristics of the study area. Contextual considerations, guided by statistical analyses, 
ensure that interventions are not only evidence-based but also responsive to the unique risk 
factors present. This approach enhances the practical applicability of the model's insights, 
facilitating their translation into on-the-ground actions. In essence, the significance values 
obtained through the logistic regression model serve as a roadmap for informed decision-
making in landslide risk assessment and management. By leveraging these insights, 
stakeholders can proactively address key risk factors, ultimately contributing to the 
development of resilient communities capable of mitigating the impact of landslides. As we 
navigate the complexities of landslide-prone regions, this study provides a valuable 
foundation for evidence-based strategies aimed at reducing the vulnerability of communities 
to landslide hazards. 
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