

Key Elements of Workshop Management System For Vocational College in Malaysia

Mohd Lutfi Mohd Raffi, Mohd Azlan Mohammad Hussain, Rafiezah Mohd Zulkifli

Fakulti Pendidikan Teknikal dan Vokasional, Universiti Pendidikan Sultan Idris (UPSI), 35900 Tanjong Malim, Perak, Malaysia Corresponding Author Email: azlan_hussain@ftv.upsi.edu.my

To Link this Article: http://dx.doi.org/10.6007/IJARPED/v13-i1/20880 DOI:10.6007/IJARPED/v13-i1/20880

Published Online: 16 February 2024

Abstract

Workshops or engineering laboratories are a crucial part of implementing technical and vocational education and training (TVET) programs because this is where practical activities are carried out to ensure that students are competent in performing specific tasks. However, several issues in workshop management within TVET institutions, such as record management, maintenance, and safety concerns, require improvement to optimize their use in TVET programs. This study systematically examines relevant documents and materials to determine and prioritize key elements and sub-elements essential for developing a workshop management system in TVET educational institutions, particularly in Malaysian Vocational Colleges. Findings from the document analysis through READ approach are categorized into five themes, serving as key elements management areas for tailoring the workshop management system: 1) asset and stock management, 2) safety management, 3) workshop environmental management, 4) workshop maintenance management, and 5) workshop documentation management. Additionally, 22 sub-elements are organized into suitable themes to guide the design of the workshop management system. By focusing on these specific elements, the study aims to provide administrators and educators with a guide for effective workshop management, outlining critical activities for implementation.

Keywords: Workshop and Laboratory Management, TVET, Vocational College, Document Analysis, READ Approach

Introduction

In the dynamic landscape of technical and vocational education, workshop management stands at the heart of innovation, skill development, and quality assurance. As the demand for a competent and adaptable workforce continues to grow, Technical and Vocational Education and Training (TVET) programs have become central to preparing the next generation of skill workers (Ismail et al., 2018; Fadel et al., 2022). These programs, particularly when supported by well-structured and effectively managed workshops, play a pivotal role in bridging the gap between academic knowledge and practical proficiency (Bakri & Zakaria, 2018).

The significance of workshops and laboratories in TVET programs cannot be overstated. According to Bakri et al (2022); Yasin et al (2012), these workshops function as living workshops where students acquire practical skills, explore real-world engineering problems, and hone their problem-solving abilities. They cultivate future engineers and technicians who are not only well-versed in textbook material but also skilled in applying this information in practical situations. They are the fertile ground where theory meets practice. While the role of engineering laboratories in TVET is pivotal, it comes with its share of challenges. Managing these facilities effectively can be complex due to budget constraints (Manap et al., 2017), equipment maintenance (Bakri et al., 2022; Bakri & Zakaria, 2018), and alignment with rapidly evolving industry standards (Ali et al., 2020; Syahrial & Wibawa, 2020).

Workshop or laboratory management in vocational colleges involves various parties, particularly lecturers who directly utilize the workshop, especially during practical sessions with students. The workshop is usually managed by a workshop coordinator, who is typically a lecturer (Kolej Vokasional Arau, 2018). The workshop coordinator plays a crucial role in maintaining the workshop's optimal condition to ensure the efficient execution of students' practical sessions (Yasin et al., 2012). Consequently, this paper aims to determine key elements to serve as guidance for workshop or laboratory management, specifically tailored for TVET programs in vocational colleges. Additionally, identifying sub-elements for each key element is imperative to ensure compatibility with activities related to workshop management for the system's design and development.

Literature Review

One of the responsibilities of the workshop coordinator or lecturer is to make sure that equipment and materials used in practical session are in good condition and adequate (Arau, 2018). Record management is one of the good practices to ensure the equipment and material in the workshop is sufficient (Junaid & Jangda, 2020). Thus, one critical aspect in the effective functioning of workshop or laboratory management systems is the transition from manual record management to digital solutions (Rabiah et al., 2022; Setiawan et al., 2019). Traditional manual record-keeping systems are often prone to errors, inefficiencies, and delays (Fauzan et al., 2019; Pangestu & Sukardi, 2019). Furthermore, manual records tend to become dirty during practical sessions in the workshop while keeping them up to date (Pangestu & Sukardi, 2019). Researchers Zuhdi & Sukamta (2017); Junaid & Jangda (2020); Oktavia & Wongso (2015); Ramadina & Hadi (2015) highlighted the need for vocational colleges to adopt automated record management systems to enhance accuracy, accessibility, and overall efficiency. The shift to digital platforms not only streamlines administrative tasks but also facilitates real-time data retrieval, improving decision-making processes.

Another critical aspect of workshop management is the maintenance of equipment and facilities, which is paramount for the smooth operation of vocational college workshops or laboratories. Studies (Bakri & Zakaria, 2018; Junaid & Jangda, 2020; Setiawan et al., 2019) emphasize the importance of implementing a comprehensive maintenance record management system. This system should include preventive maintenance schedules, historical data tracking, and timely alerts for necessary repairs. Addressing maintenance proactively ensures the longevity of equipment, reduces downtime, and contributes to a conducive learning environment (Abdelrahman et al., 2020).

Ensuring the safety of students and staff are also a top priority in workshop or laboratory management. Workshop or laboratories involves the use of real equipment and machine that might be dangerous to students without proper attention and guidance.

Windasari et al (2019) stress the need for an integrated safety issue management system. This involves the development of protocols for reporting and addressing safety concerns promptly. By incorporating technology, such as IoT sensors and automated incident reporting, vocational colleges can enhance their ability to identify and mitigate safety risks effectively.

In conclusion, the literature supports the integration of automated systems to address manual record management, maintenance record management, and safety issue management in vocational college workshops or laboratories. This shows that the workshop management system is crucial and it can be done by determining elements and sub-elements to develop the system as the first step to achieve it. These advancements not only align with global trends in education but also contribute significantly to the efficiency, safety, and overall quality of technical and vocational education and training (TVET) programs in Malaysia.

Methodology

Document analysis, a qualitative research method similar to other methodologies, was used in this article. The word 'document analysis,' also known as 'document review,' is used as a means of obtaining data and information in several disciplines and has various meanings depending on how it is conducted, understood, and used (Kayesa & Shung-King, 2021). This article investigates important papers and resources methodically to identify and prioritize key elements and sub-elements required for creating and implementing a workshop management system in TVET educational institutions, specifically Malaysian Vocational Colleges.

Document Analysis

Document analysis is often used in combination with other qualitative research methods as a means of triangulation; multiple sources of data (Fusch et al., 2018). The qualitative researcher is expected to draw least two sources of evidence; that is, to seek convergence and corroboration through the use of different data sources and methods (Bowen, 2009). Apart from documents, such sources include interviews, participant or non-participant observation, and physical artifacts (Yin, 1994). Although document analysis has primarily been employed as a supplement with other research techniques, it has occasionally been utilized independently (Bowen, 2009). Dalglish et al (2020) also added that document analysis can be used as a stand-alone method, for example, to analyze the contents of specific types of policies as they evolve and vary across geographies, but it can also be powerfully combined with other types of methods to cross-validate (triangulate) and deepen the value of concurrent methods.

In order to provide meaning, improve understanding, and create empirical knowledge, this approach entails a thorough inspection and analysis of data taken from various texts (Karppinen & Hallvard, 2012). According to Bowen (2009), a study's use of documents for systematic review might take many different forms without the researcher's intervention. Examples of their contents include advertisements, meeting agendas, minutes, and attendance records, background papers, books, brochures, diaries, journals, event programs, correspondence, memoranda, maps, charts, newspaper clippings, articles, press releases, application forms, summaries, program proposals, radio and television show scripts, institutional or organizational reports, survey data, and other public records. Additionally, photo albums and scrapbooks can serve as documented content for academic research. Such records can be found in institutional or organizational files, historical society offices, newspaper archives, and libraries.

In examining document analysis, scholars utilize a research method known as content analysis. As defined by Krippendorff (2004) content analysis is a research approach aimed at deriving reliable and meaningful insights from texts (or other relevant materials) regarding their usage contexts. This article will employ the READ approach, the document analysis techniques recommended by (Dalglish et al., 2020). The READ method involves four steps: *R*eadying materials, *Extracting data*, *Analyzing the data*, and *D*istilling the findings (Table 1).

Steps	Explanation				
(R)	Researchers should decide the type and approximate number of				
Readying materials	documents they plan to analyze based on the research question				
	They need to establish criteria related to the topic, dates of				
	inclusion, and a list of places to search for documents.				
(E)	Gathering information can take different forms, depending on the				
Extract data	research query and document characteristics. A straightforward				
	approach involves using an Excel spreadsheet, where each row				
	signifies a document, and columns encompass various information				
	categories for extraction. Additionally, documents can be imported				
	into thematic coding software like Atlas.ti or NVivo for data				
	extraction.				
(A)	During the data extraction phase, the researcher is already				
Analyze data	analysing data and forming initial theories—as well as potentially				
	modifying document selection criteria. However, only when data				
	extraction is complete can one see the full picture.				
(D)	Refining the findings involves revisiting memos, improving them,				
Distil the findings	incorporating graphics and quotes, and addressing any incomplete				
	areas. Documents undergo a thorough review when one of these				
	conditions is met:				
	1. Researchers collect pertinent documents that satisfy the				
	criteria.				
	2. If time is limited, refine the review criteria.				
	3. Grasp the phenomenon, even if not all documents meeting				
	the criteria are analyzed, progressing until saturation.				

 Table 1

 READ approach suggested by Dalalish et al (2020)

To sum up, content analysis is a valuable method often used with other research techniques for a more robust understanding. While it can stand alone, its power is in combining with other methods for a richer perspective. This systematic process aims to uncover meaningful insights and contribute to the objective of this paper.

Data Analysis and Findings

Ready (R)

The documents chosen for analysis follow the criteria proposed by Dalglish et al (2020) to ensure their suitability and relevance to the study's objectives (see Table 2). To meet the inclusion criteria, the researcher selected material related to two main topics: "workshop or laboratory" and "workshop or laboratory management system". Due to a scarcity of literature on workshop management systems, the researcher also decided to review articles published between 2012 and 2023 to gather relevant information through Scopus and Google Scholar

databases. To ensure the inclusion criteria were satisfied and the papers fit within the current study, the current research aims, the titles, and the main content of each article were carefully reviewed. As a result, 18 articles available to be extracted.

Material parameters suggested by Dalglish et al (2020)				
Parameters	Inclusion			
Topic 1) Workshop/ Laboratory				
	Workshop/ Laboratory Management System			
Timeline /Years	2012 – 2023			
Document sources	Scopus and Google Scholar			

Table 2

Extract (E)

In Step E, relevant information from the 18 articles selected was extracted into data matrix (refer to Table 3). This process also called as coding process in content analysis. There are total of 57 codes or data extracted from the articles.

Table 3				
Extraction Results				
Author	Findings	Data extracted		
Ruhizan M. Yasin et al. (2012)	Based on three-round Delphi study conducted among 15 experts, the findings were group into four themes: documentation management, safety management, environmental management, and equipment management.	 Asset and stock management Safety management Workshop environmental management Workshop documentation management 		
Bakri & Zakaria (2018)	For better maintenance of facilities and infrastructure, the conventional has to be improved while providing a good environment.	 Facilities maintenance Infrastructure maintenance 		
Vengidason et al. (2021)	To prevent accidents, we can use methods like putting up signs, keeping the workshop clean, and enforcing strict rules. If a danger arises, students suggest solutions such as having a first aid kit, providing training for students and teachers, maintaining a clean floor, installing fire extinguishers and alarms, and having emergency exit routes.	 Signage Keeping the workshop clean Strict rule First aid kit Training for students and teachers Clean floor Fire extinguisher Alarms Emergency exit route 		
Pangestu & Sukardi (2019)	The laboratory on Vocational High • Workshop atmosphere School in Banggai district still • Lighting needs further improvement if it is • Workstation			

	seen from four indicators from student-respondents which are atmosphere, lighting, maintenance, and workstation. While there are three indicators from teacher-respondent which are the practice area, lighting, and maintenance.	Practice areaFacilities Maintenance
Author	Findings	Data extracted
Azizi Yahaya et al. (2020)	Based on the study that has been conducted to examine the factors that influence the effectiveness of teaching and learning in vocational workshop, it is found that the most dominant factor for a vocational workshop in a technical secondary school is the environment factor, followed by management, safety, and lastly, aggingment	 Asset and stock management Safety management Workshop environmental
Nasir, Azri, & Ujang (2022)	Presently, it is found that asset management practices in Malaysia primarily focus on assets operations such as management, monitoring, maintenance, and disposal	 Asset management Monitoring asset Machine and equipment maintenance Asset disposal
Abdelrahman, Abdalaal, & Shukri (2020)	The time and effort needed to select and implement computerize maintenance management system are well spent because of the benefits and savings they offer in managing the maintenance function.	 Asset maintenance management system
Mohamed, Nawi, & Ghafar (2022)	Most Vocational College lacked essential safety information, and more than half of engineering workshops had high noise levels. Emergency preparedness was lacking in some computer workshops, and improvements were needed in ergonomic design.	 Safety information High noise levels Fire equipment Ergonomic design for furniture and workspace
Bakri et al. (2022)	To make sure these facilities are always available for hands-on participation in labs and workshop, we need good maintenance management.	• Workshop maintenance management

Fauzan et al. (2019)	Computerize information system	Register asset		
	was developed to manage assets,	 Request asset 		
	which include the process of	 Acceptance asset 		
	registration, request, acceptance,	Maintenance asset		
	and maintenance			
Ramadina & Hadi,	The administration management	 Human resources 		
(2015)	of the Workshop at Vocational	 Machinery or equipment 		
	High Schools (SMK) includes five	 Materials or raw materials 		
	essential aspects: human	• Finances		
	resources, machinery or • Work environment			
	equipment, materials or raw workshop			
	materials, finances, and the			
	practical work environment in the			
	workshop.			
Author	Findings	Data extracted		
Sulistyo, Achmad,	The results show that the asset	 Instruments and equipment 		
& Purnama (2022)	management and tracking system	management		
	helps TVET to keep track of their			
	equipment and vital inventories in			
	real time.			
Mtshali (2021)	A significant weakness in terms of	 Documentation of equipment 		
	the training was that lecturers had and material needed			
	no specific lesson plans or outlines practical session			
	and no documented task			
	descriptions. Lessons were often			
Discussion Conserve	conducted in an ad noc fashion.			
Riswanto, Suseno,	The results of the research are	Inventory system		
Partono, Harjati, &	online school laboratory	Laboratory documents		
Dedy (2019)	(anling inventory systems, anling	Administration system		
	(online inventory systems, online	(reservation on equipment		
	administration system)	and tools)		
Halimatun Sa'adiah	The TMORCODE system facilitates	• Lland tool management		
Hamilatun Sa aulan Harith at al. (2020)	the recording process of hand tool	Hand tool management		
Hantin et al. (2020)	management and workshop usage	• workshop usage (booking)		
	during the teaching and learning			
Setiawan et al	Proper asset management can	• Accot maintonanco		
(2019)	support operational activities	Asset Maintenance		
(2019)	especially in the maintenance	• Asset Repair		
	repair and procurement of assets	• Asset management		
	for the organization			
Windasari et al	The application made has been	• Fire extinguishers		
(2019)	able to handle the records of K3	First aid kits		
(2013)	inspection tools namely fire	 Instatu Nits Insidents report 		
	extinguishers and first aid kits and	 incluents report 		
	exanguishers and hist dia kits, and			

report eloped	incidents	were	
eloped			
eb-based in	iventory ap	plication	 Monitoring inventory
QR Code a assist in m the proc	and RFID tec onitoring in cess of bo	chnology nventory orrowing	 Borrowing equipment
i	ab-based ir QR Code a assist in m the proc	 apped b-based inventory ap QR Code and RFID technologies assist in monitoring in the process of be ipment 	 abped b-based inventory application QR Code and RFID technology assist in monitoring inventory the process of borrowing ipment

Analyze (A)

The document review conducted for this study extracted a substantial amount of data from 18 previous research studies focused on workshop/laboratory and workshop/laboratory management systems. The 57 data extracted form a pattern that leads to categorizing the data into six groups: 1) related to equipment, machine, and materials; 2) related to workshop safety; 3) related to maintenance; 4) related to workshop environment; 5) related to workshop documentation; and 6) not related or not suitable to be implemented within the system. The categorization (refer to Table 4) serves for easy visualization, synthesis, and comparison.

Table 4

Categorizing the data extracted from the articles

Related to equipment,		Rel	Related to workshop safety Related to maintenan		ated to maintenance	
mad	machine, and materials					
1.	Asset a	nd stock	19.	Safety management	31.	Facilities maintenance
	manageme	nt	20.	Keeping the workshop	32.	Infrastructure
2.	Asset a	nd stock		clean		maintenance
	manageme	nt	21.	First aid kit	33.	Facilities Maintenance
3.	Asset mana	gement	22.	Clean floor	34.	Machine and
4.	Monitoring	asset	23.	Fire extinguisher		equipment
5.	Asset dispo	sal	24.	Alarms		maintenance
6.	Register ass	set	25.	Safety management	35.	Asset maintenance
7.	Request ass	set	26.	Safety information		management system
8.	Acceptance	asset	27.	Fire Equipment	36.	Workshop maintenance
9.	Machinery	or	28.	Fire extinguishers		management
	equipment		29.	First aid kits	37.	Maintenance asset
10.	Materials	or raw	30.	Incidents report	38.	Asset maintenance
	materials				39.	Asset Repair
11.	Finances					
12.	Instruments	s and				
	equipment					
	manageme	nt				
13.	Inventory s	ystem				
14.	reservation	on				
	equipment	and tools				
15.	Hand tool n	nanagement				
16.	Asset mana	gement				
17.	Monitoring	inventory				
18.	Borrowing	equipment				

Related to the workshop environment	Related to workshop documentation	Not related or not suitable to be implemented within the system
40. Workshop environmental	47. Workshop documentation	 52. Human resources 53. Safety Signage
management 41. Workshop atmosphere 42. Lighting 43. Workstation	management 48. Documentation of equipment and material needed in a practical	54. Training for students and teachers55. Strict rule56. High noise levels
44. Practice area45. Workshop environmental	session 49. Laboratory documents 50. Workshop usage	57. Ergonomic design for furniture and workspace
46. Work environment in the workshop	(booking) 51. Emergency exit route	

The codes or data in the "not related or not suitable group to be implemented within the system" will be eliminated and duplicate data or similar meaning data in each group will be combined to contribute significantly to the efficiency of the analysis. This not only simplified the dataset but also reduced redundancy, ultimately enhancing the accuracy of the results. The results after the filtering process are shown in Table 5.

Out of the initially extracted 57 data points, 21 were deemed applicable for in-depth analysis to identify key elements and sub-elements. The categorization of these data also led to the identification of five essential themes (key elements) for a workshop management system: 1) Asset and stock management, 2) Safety management, 3) Workshop environmental management, 4) Workshop documentation management, and 5) Workshop maintenance management.

Table 5

Asset and	Safety	Workshop	Workshop	Workshop
stock	management	Maintenance	environmental	documentation
management		management	management	management
1. Monitorin	7. First aid kit	12. Facilities	15. Ventilation	19. Documentati
g asset	8. Fire	and	16. Lighting	on of
2. Asset	extinguish	infrastructu	17. Workstation	equipment
Disposal	er	re	condition	and material
3. Register	9. Alarms	maintenanc	18. Housekeepi	needed in a
asset	10. Safety	e	ng record	practical
4. Request	informatio	13. Asset		session
asset	n	maintenanc		20. Finance
5. Acceptanc	11. Incidents	e		record
e asset	report	manageme		21. Workshop
6. Borrowin		nt		usage based
g asset		14. Asset Repair		on booking
				record

Creating key elements and sub-elements for the workshop management system

These key elements find support and validation in the body of existing research, as evidenced by studies conducted by (Yasin et al., 2012; Bakri & Zakaria, 2018; Yahaya et al., 2020; Bakri et al., 2022). This consolidation of findings strengthens the proposed components and provides a robust foundation for the development of an effective workshop management system. The conclusive insights into these key elements and their corresponding sub-elements will be presented in the concluding stage (Step D).

Distil (D)

The final products of the distillation process will vary by research study, but they will invariably enable articulation of findings in connection with research questions (Dalglish et al., 2020). The key elements and sub-elements to design and develop a workshop management system are presented in the mind map (Figure 1). The system is divided into several key management areas (key elements) and each represented by a different colour and connected by lines to related subtopics (sub-elements). It also presents a holistic view of how a workshop can be managed effectively across different facets of operation. It emphasizes the importance of documentation, safety protocols, asset management, and environmental conditions, all of which contribute to a functional and efficient workshop.

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN PROGRESSIVE EDUCATION AND DEVELOPMENT

Vol. 13, No. 1, 2024, E-ISSN: 2226-6348 © 2024

Figure 1: Key elements and sub-element for workshop management system

Discussion and Conclusion

The integration of technology into management systems, while prevalent in industries, is not yet widely adopted in vocational colleges. This observation underscores the potential for further advancements and integration of technology to enhance workshop management in TVET settings. The results of this research are anticipated to serve as a roadmap for enhancing the standard of education in vocational colleges, offering valuable insights for administrators and instructors in efficient workshop management. The identified key elements, including asset and stock management, safety management, workshop environmental management, workshop documentation management, and workshop maintenance management, draw strength and relevance from a synthesis of diverse perspectives found in reputable research studies.

The application of the READ approach in document analysis indirectly introduces diversity in TVET research methods, aligning with the broader goal of improving the quality and achievement of students. It's important to highlight that document analysis, being a cost-effective method, plays a crucial role in acquiring empirical data discreetly and without causing reactions. Although it has significant strengths, it's crucial to recognize its limitations. Researchers should not view document analysis as a replacement for other forms of evidence that might better suit the research problem and conceptual framework. Combining results from document analysis with data from multiple sources (triangulation) can enhance the robustness of research findings. In the context of this research, the triangulation with the findings from document analysis is crucial to ensure that the key elements and sub-elements are suitable for setting in Malaysian vocational college.

In conclusion, the comprehensive document review and data analysis undertaken in this study have successfully identified essential elements and sub-elements crucial for the development of an efficient workshop management system. This synthesis of knowledge contributes significantly to the existing body of research in the field, offering a consolidated understanding of workshop management components. The insights from these findings also

lay the groundwork for contributing a comprehensive model or framework for effective workshop management.

Acknowledgment

This research was not funded by any grant.

References

- Abdelrahman, O., Abdalaal, A., & Shukri, M. I. (2020). Implementation of Computerized Management System in Maintenance Workshop. *International Journal of Engineering Applied Sciences and Technology* (Vol. 4).
- Ali, M., Triyono, B., & Koehler, T. (2020). Evaluation of Indonesian Technical and Vocational Education in Addressing the Gap in Job Skills Required by Industry. In Proceeding - 2020 3rd International Conference on Vocational Education and Electrical Engineering: Strengthening the framework of Society 5.0 through Innovations in Education, Electrical, Engineering and Informatics Engineering, ICVEE 2020, 9243222.
- Bakri, A., & Zakaria, I. H. (2018). Uplifting the Function of Maintenance Management Towards Sustainable Performance of Laboratory and Workshop in TVET Institutions. *Journal of Social Sciences Research*, 2018 (Special Issue 6), 153–160. doi: 10.32861/jssr.spi6.153.160
- Bowen, G. A. (2009). Document analysis as a qualitative research method. *Qualitative Research Journal*, 9(2), 27–40. doi:10.3316/QRJ0902027
- Dalglish, S. L., Khalid, H., & McMahon, S. A. (2020). Document analysis in health policy research: The READ approach. *Health Policy and Planning*, *35*(10), 1424–1431. doi:10.1093/heapol/czaa064
- Fauzan, R., Pamungkas, V. Y., & Wibawa, J. C. (2019). Information System for Asset Management. In IOP Conference Series: Materials Science and Engineering (Vol. 662). Institute of Physics Publishing. doi:10.1088/1757-899X/662/2/022020
- Fusch, P., Fusch, G. E., & Ness, L. R. (2018). Denzin's Paradigm Shift: Revisiting Triangulation in Qualitative Research. *Journal of Social Change*, *10*(1). doi:10.5590/josc.2018.10.1.02
- Junaid, S., & Jangda, Z. (2020). Successful deployment of a laboratory information management system LIMs; striding towards modern, paperless labs. In *International Petroleum Technology Conference 2020, IPTC 2020*. doi:10.2523/iptc-19656-ms
- Kayesa, N. K., & Shung-King, M. (2021). The role of document analysis in health policy analysis studies in low and middle-income countries: Lessons for HPA researchers from a qualitative systematic review. *Health Policy OPEN*, 2. doi:10.1016/j.hpopen.2020.100024
- Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology (2nd ed.) (2nd Edition). Sage Publications.
- Kolej Vokasional Arau. (2018). Lampiran C6.1.2A Garis Panduan Pengurusan Akademik. *Garis Panduan Pengurusan Akademik*.
- Manap, N., Hassan, N., & Syahrom, N. (2017). Preparation of Vocational College Graduates as Skilled Workforce in the Local Construction Industry. *Journal of Technical Education and Training* (Vol. 9). JTET.
- Mohamed, Z., Nawi, M. N. M., & Ghafar, N. A. (2022). Identification of hazard and risk surrounding the workstation in vocational colleges. In *AIP Conference Proceedings* (Vol. 2454). doi:10.1063/5.0078678
- Fadel, M.N. S., Ishar, M. M. I., Jabor, M. K., Ahyan, M. N. A., & Janius, N. (2022). Application of Soft Skills Among Prospective TVET Teachers to Face the Industrial Revolution 4.0. *Malaysian Journal of Social Sciences and Humanities (MJSSH)*, 7(6), e001562. doi:10.47405/mjssh.v7i6.1562
- Mtshali, T. I. (2021). Occupational Training for TVET College Civil Engineering Students in the Modern Era: Has Anything Changed? *JOURNAL OF TECHNICAL EDUCATION AND TRAINING*, 13(4), 82–91. https://doi.org/10.30880/jtet

- Nasir, A. A. I. M., Azri, S., & Ujang, U. (2022). Asset Management in Malaysia: Current Status. In *IOP Conference Series: Earth and Environmental Science* (Vol. 1064). Institute of Physics. doi:10.1088/1755-1315/1064/1/012035
- Oktavia, T., & Wongso, A. (2015). Asset Management System for Computer Laboratory. Journal of Theoretical and Applied Information Technology, 10(1).
- Pangestu, F., & Sukardi, S. (2019). Evaluation of the implementation of workshop and laboratory management on vocational high school. *Jurnal Pendidikan Vokasi*, 9(2), 172–184. doi:10.21831/jpv.v9i2.25991
- Rabiah, N. N., Lindawati, L., & Sarjana, S. (2022). Web-Based Laboratory Inventory Application Using QR Code and RFID in Telecommunication Engineering Laboratories/Workshops. *Sinkron*, 7(4), 2248–2261. doi:10.33395/sinkron.v7i4.11624
- Ramadina, S., & Hadi, S. (2015). Pengembangan Sistem Informasi Manajemen Bengkel Kerja Sekolah Menengah Kejuruan. *Jurnal Pendidikan Vokasi*, *1*, 103–116.
- Riswanto, Suseno, N., Partono, Harjati, P., & Dedy, H. A. (2019). School Laboratory Management Information System. In *Journal of Physics: Conference Series* (Vol. 1361). Institute of Physics Publishing. doi:10.1088/1742-6596/1361/1/012068
- Setiawan, R., Kurniadi, D., Aulawi, H., & Kurniawati, R. (2019). Asset management information system for higher education. In Journal of Physics: Conference Series (Vol. 1402).
 Institute of Physics Publishing. doi:10.1088/1742-6596/1402/2/022083
- Sulistyo, T., Achmad, K., & Purnama, I. B. I. (2022). The Asset Management and Tracking System for Technical and Vocational Education and Training (TVET) Institution Based on Ubiquitous Computing. *ComTech: Computer, Mathematics and Engineering Applications, 13*(1), 23–34. doi:10.21512/comtech.v13i1.7342
- Syahrial, Z., & Wibawa, B. (2020). Model of interface between curriculum, competence standard, and standards operational procedure to ensure their link and match. *International Journal of Advanced Science and Technology, 29(4 Special Issue), Pp.* 1703–1714, 1703–1714.
- Vengidason, S., Nashir, I. M., Tang, J. R., Ismail, M. A., Nallaluthan, K., & Subramaniam, T. S. (2021). Importance of safety in a workshop at schools for a safe and effective teaching and learning sessions. *Journal of Technical Education and Training*, 13(3), 155–161. https://doi.org/10.30880/jtet.2021.13.03.015
- Windasari, I. P., Purba, K., Eridani, D., Septiana, R., & Mahachandra, M. (2019). Application Development of Inspection of Fire Protection Equipment, First Aid Kit and Incident Reporting Case Study. In *The 7th International Conference on Public Health* (pp. 184– 187). doi:10.26911/the7thicph-FP.02.11
- Yasin, R. M., Mohamad, Z., Rahman, M. N. A. B., & Hashim, M. H. M. (2012). The formation of indicators on engineering laboratory management. *International Education Studies*, 5(5), 212–217. doi:10.5539/ies.v5n5p212
- Yin, R. K. (1994). Discovering the Future of the Case Study. Method in Evaluation Research. *Evaluation Practice*, *15*(3), 283–290. doi:10.1177/109821409401500309