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Abstract 
Music visualization research is extremely complex and dynamic. Several researchers have 
applied various methods to persevere in the study of all aspects that make up music. The 
complexity of music also includes factors such as waveform, frequency, pitch, rhythm, tempo, 
timbre, and chords. Researchers in recent years have studied the extraction of single 
elements, visualization, or cross-discipline for these aspects. As far as the current research is 
concerned, most of the disciplines related to music visualization are focused on computers, 
psychology, sports science, and other related disciplines. Research on the elements of music 
itself has focused on music visualization, music element extraction, music association, music 
emotion, and the study of several important aspects of music, such as waveform, frequency, 
pitch, rhythm, tempo, timbre, and chord. After reviewing the research, this paper has found 
that with the continuous development of science and technology, music visualization has a 
progressive intersection with computer science, artificial intelligence, and neural networks. 
Thus, future research can continue to interact more with computer science. 
Keywords: Music, Extraction, Visualization, Waveform, Frequency, Pitch, Rhythm, Tempo, 
Timbre, Chords 
 
Introduction 
With the increasing research in music visualization, music studies, visualization, element 
extraction, and related parameters are conducted dynamically. For music-related studies, the 
first is the study of association with some researchers conducting music-to-colour association 
studies and music-to-emotion-to-colour association studies (Zamm et al., 2013). Music-
emotion correlation studies are also ongoing research in the field of music research. Many 
scholars have used it to study the effect of music on listeners' inter-emotional responses by 
studying people recording their emotional reactions after listening to music (Swaminathan & 
Schellenberg, 2015). Many researchers have also studied the extraction or visualization of 
some aspects of music through computer technology and datasets, and the study of music 
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also has cross-disciplinary studies with the human brain and motor nerves, among others (Roy 
& Dowd, 2010). 
 
This paper reviews the methods related to music content processing in terms of element 
extraction and visualization. In terms of research on music element extraction, some 
researchers' music information retrieval algorithms have been used to extract the contours 
of melodies in music (Zhang, 2022). Some researchers have also used neural networks to track 
and extract rhythms and beats in the music and so on (Oord et al., 2018). For music 
visualization research, scholars have been working on developing models with neural 
networks to continuously improve the precision and accuracy of visualization (Miller et al., 
2019; Lima et al., 2022). 
 
Music is an extremely complex object of study in itself, and music visualization can be 
designed to cover all aspects of music, such as rhythm, waveform, and melody (Yu et al., 
2021). The rest of the elements have been studied in the direction of how to extract them 
from other characteristics of the music and analyze their accuracy after extraction (Pinto et 
al., 2021). During the course of the review of music visualization, many studies were found to 
have accomplished graphical, pictorial treatments of music but failed to respond with 
sufficient precision to the music itself (Lima et al., 2022). Many visualization studies have 
visualized music from an associative perspective, and most of these visualization methods 
examine music as a whole (Fonteles et al., 2014). By contrast, other studies on musical 
elements have mostly focused on the extraction of those elements, and extraction can be 
considered the first step of visualization (Zhang, 2022). Therefore, this paper posits that the 
visualization of each element of music can still undergo further investigation on the basis of 
extraction. Additionally, being able to restore the characteristics of each element of music 
more accurately is the direction in which visualization research can continue to dig deeper. 
The accuracy of the methods for visualization extraction has also become more accurate with 
the development of the research and the aspects studied (Lima et al., 2022). With the 
development of the disciplines of artificial intelligence and neural networks, an increasing 
number of researchers are working on a more accurate representation of the visual content 
of music based on neural networks (Kim et al., 2019).  
 
The challenges in music visualization are primarily reflected in the following aspects: most of 
the studies are focused on a specific dataset with certain limitations (Greer et al., 2019). In 
addition, most of the current research in music visualization happens through real-time 
animation, with less attention to the structural components of music (Lima et al., 2022). In 
terms of the current visualization research, the accuracy of the method of extracting and 
tracking the element can be further improved, regardless of the musical element, which is 
often difficult to improve in previous studies (Huang et al., 2021). As far as the current 
research is concerned, the visualization studies of melody and rhythm in music are well-
established (Salamon et al., 2012; Reddy & Rompapas, 2021). Moreover, visualization studies 
for other musical elements are still more difficult (Lima et al., 2022; Reddy & Rompapas, 
2021). 
 
Music technology is constantly changing, and new important techniques are emerging to 
visualize music content (Miller et al., 2019). Research on music visualization helps us 
understand music better and more intuitively (Dalton et al., 2019). Music is also often used 
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as a tool for emotional expression by artists, and research on the extraction and visualization 
of musical elements can provide a better insight into the artist's artistic style (Coorevits et al., 
2019). It also provides an easy and more accurate match for people to search for music that 
matches their preferences in their lives (Zhang, 2022). Music often affects people's 
psychological conditions and even physical motor performance; thus, visualizing or extracting 
music-related elements provides a better understanding of the mechanisms by which music 
affects people's minds and bodies (Karageorghis et al., 2018). Exploring music element 
extraction and visualization studies can also further inform music classification (Eghbal-Zadeh 
et al., 2015). 
 
It provides a research basis and theoretical support for future researchers studying the 
direction of music visualization. In the study of visualization, less research is carried out on 
pitch, spacing, timbre, and harmony of music in the study, and these topics can exactly 
provide new directions for researchers. Music visualization research will provide more 
comprehensive theoretical support for a better understanding of music. 
 
Materials  
Music  
In the field of music research, associative studies also reached a peak in 2013. Zamm et 
al.(2013) proposed the color-music Association (CSM) which refers to the phenomenon of 
perceiving color when someone hears a note or sings a song. Palmer et al.(2013) 
demonstrated experimental evidence for cross-modal matching between music and color 
mediated by emotional associations. White matter correlates of colour-music associations of 
synapses have also been investigated (Zamm et al., 2013). Music and emotion have been the 
subject of keen research, and Clarke et al (2015) have extensively studied emotional, 
linguistic, and social motivation from a musical perspective. A large number of academic 
papers and awards from different disciplines are presented, demonstrating that listening to 
music via headphones can profoundly change the cultural attitudes of highly demanding 
perceivers. Swaminathan and Schellenberg (2015) investigated the link between music and 
emotion, the communication and perception of emotion in music, the emotional 
consequences of listening to music, and the predictors of music preference. Music audio 
generally consists of three physical attributes: frequency, time, and amplitude (Koelsch et al., 
2013).  
 
Some researchers have demonstrated the processing of non-local dependencies in music 
(Koelsch et al., 2013). Li et al (2018) proposed a speech analysis dataset for facilitating musical 
performances and informed us how to build a complete dataset from a very small package. 
Melody extraction algorithms are used in computer science to extract pitch information about 
the main melody from music recordings (Salamon et al., 2014). Levitin et al (2018) review 
studies targeting the temporal and rhythmic characteristics of music that span several 
methodological techniques, including neurosurgery, psychophysicists, and traditional 
behavioural experiments. We also review studies of animal synchrony and compare the 
results to advances in human rhythm perception and cognition. MIR has been exploring 
automated music genre recognition since 2002. Our strategy based on feature sets is 
effective. Analyzing, evaluating, comparing, and merging acoustic and visual features produce 
classification accuracies equivalent to or better than existing methods (Nanni et al., 2016). 
Herremans et al (2018) proposed a functional classification that reveals the 
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interconnectedness of systems used for automatic music generation systems. Interference 
models, composer models, and hybrid models differ in their assumptions and network 
structure. Dong et al (2018) proposed three symbolic multitrack music generation models 
based on MuseGAN.  
 
Some researchers reviewed the research results on content-based music information 
retrieval involving eight denotational-related tasks, including sound/non-sound 
segmentation, artist identification, style classification, dance identification, sentiment 
identification, instrument identification, and music fragment annotation (Murthy & 
Koolagudi, 2019). Flexer et al (2020) reviewed the latest breakthroughs in music structure 
analysis methods for audio and discussed the challenges that may arise when applying these 
techniques in the real world. Nieto et al (2020) explored the latest algorithms for music 
structure analysis of audio and their problems in real life. Calvo-Zaragoza et al (2021) 
examined the application of optical music recognition (OMR) to transform digital audio data 
into non-digital audio data. Lerch and Knees (2021) investigated the new approaches in the 
field of music information retrieval and audio signal processing new approaches in the field 
of music information retrieval and audio signal processing, mainly through machine learning 
solutions. 
Koelsch and Jäncke(2015) proposed a new assessment method to measure heart rate changes 
associated with music and other factors. Some scholars (Janata et al., 2012) have 
experimentally explored the relationship between sound and emotion, arguing that sound 
can be considered a mental structure and model system. Roy and Dowd (2010) assessed the 
involvement of acoustic systems in terms of musical neurochemistry. McDermott et al (2016) 
studied the same music in different ethnic and regional cultures in terms of aesthetic 
responses and found that exposure to musical harmony may alter tastes, demonstrating that 
culture dominates aesthetic responses to music. Roy and  Dowd (2010) examined how 
individuals and groups use music from a sociological perspective, how the collective 
production of music is achieved, and how music relates to broader social distinctions, 
particularly class, race, and gender. 
 
Extraction  
Schedl et al (2014) first introduced established methods for feature extraction and music 
indexing of music items from audio signals and background data sources, focusing on 
contemporary MIR achievements (e.g., automatic semantic tagging and user-centric retrieval 
and recommendation methods). Methods for estimating heterotopic/polyphonic music 
melodic sequences based on systematic MODGD (direct) and source-based MODGD (source) 
have also been investigated (Rajan et al., 2017). Chu (2022) analyzed the characteristics of 
digital music and extracted musical features, rhythm, tune, intensity, and timbre in MIDI 
format. To extract musical melodies, Bittner et al (2015) trained a discriminative binary 
classifier to identify melodic and non-melodic contours. It outperformed the generative 
model in contour classification accuracy.  
 
Oramas et al (2016) created a music knowledge base and tested an information extraction 
pipeline to better interpret the music data. To demonstrate that signal acoustic features can 
be used to distinguish musical genres, Shin et al (2019) used a sound-encoded auditory spike 
code to extract acoustic features similar to the human auditory system. In the same year, 
MFCC was also used to extract features, and K-NN was used to classify music as pop or RnB 
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(rhythm and blues) (Ramadhana & Widiarthaa, 2021). In the study of cross-modal learning 
(e.g., audio and lyrics), Shin et al (2019) proposed a cross-modal deep associative learning 
architecture with a two-branch deep neural network to process audio and text (lyrics) used a 
multi-agent system that assigned extraction, classification and service duties, thereby 
enabling the automatic classification of music. On the other hand, Mo & Niu (2017) used 
orthogonal matching pursuit, Gabor function, and Wigner distribution function to analyze 
music signals—OMPGW extracts music sentiments for music applications, such as music 
retrieval or recommendation. 
 
Visualization  
In contrast to the music notation method (the most popular previous method for visualizing 
music), Smith and Williams(1997) proposed an alternative method for visualizing music using 
color and three-dimensional space. Cooper et al (2006) reviewed the attempts to visually 
represent high-level information about music content and reviewed new methods for 
visualizing music with MIR in the field of music visualization as the current state of the art. 
Nanayakkara et al (2007) quickly established real-time music visualization by using a 
combination of Max/MSPTM and FlashTM to propose a novel, new scheme that can be used 
to visualize music. Puzoń and Kosugi (2011) found that Visuals demonstrated not only obvious 
repetitions when reading a score or listening to a piece of music but also more subtle 
repetition patterns. Donnelly and Sheppard(2013) explored the use of Bayesian networks to 
identify the timbre of musical instruments. Bayesian networks with conditional dependencies 
in the time and frequency dimensions achieved 98% accuracy in the instrument classification 
task and 97% accuracy in the instrument family identification task. 
 
A simplified 3D particle system and a fast translation algorithm have also been implemented 
to generate real-time animated particles orchestrated by classical music for music 
visualization (Fonteles et al., 2013). To develop a support tool for music perception and 
composition, Fonteles et al (2014) proposed a 3D particle system and a mapping algorithm. 
Lex et al (2014) used a novel visualization technique, namely, UpSet, to quantitatively analyze 
sets and their intersections and aggregates of intersections, to visualize music. 
 
For children with hearing impairments, Kim et al (2015) provided a prototype of a music 
visualization system that records and decodes musical elements into digital data and then 
visualizes the information. Some scholars have analyzed the visualization elements through 
the ability to read the soundtrack or even simply listen to a live performance to understand 
the structural components of the piece (Malandrino et al., 2015). Oramas et al (2016) showed 
that visualization can improve the recognition of musical forms by examining the theory of 
isochore structure, visualization, and comments from novices and veterans. Pons & Serra 
(2017) used convolutional neural networks with tiny rectangular filters to classify music. A 
more expressive and intuitive deep learning architecture was achieved through the 
representational power of the first layer and the application of various filter shapes based on 
the musical concepts within the first layer. To help people create musical compositions quickly 
and efficiently, Malandrino et al (2018) built a visual tool called, Visual Harmony. 
 
Miller et al (2019) used a fundamental concept in music theory, namely, the circle of fifths, as 
a model for studying visualized music. Jeong and Kim (2019) linked the DMX512 protocol 
through Openframeworks to create a ‘dynamic lighting for music visualization’ to present 
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musical features. Khulusi et al (2020) investigated and overviewed the special relationship 
between musicology and visualization. To reveal the semantic structure in classical orchestral 
works, Chan et al (2009) proposed an innovative visualization solution. Ciuha et al (2010) 
visualized music by interconnecting similar aspects of music and visual perception, with their 
research focusing on visualizing the harmonic relationship between pitch and color. To 
enhance the music listening experience in private spaces, Reddy and Rompapas(2021) used 
‘liquid hands’ to bridge the distance between visualized virtual and actual concerts by utilizing 
alternative solutions in a virtual environment (Isaacson, n.d.). Lima et al (2022) recommended 
classifying ideas through input attributes, visualization quality, InfoVis technique if 
interactivity is allowed, and user assessment. This paper examines visual techniques 
developed by experts in the field of music analysis as well as some less successful approaches 
to music visualization Ohmi (2007) In the current work, the authors attempt to illustrate the 
development of music through still images of music in specific time units whilst paying 
attention to its structural components rather than through real-time animation. 
 
Waveform  
Inspired by sawtooth waves, Camacho and Harris (2008) developed SWIPE, an estimator for 
evaluating the pitch of speech and music. Klapuri (2008) determined the fundamental 
wavelengths of multiple sounds in polyphonic music and multichannel speech signals by 
studying computer models of human auditory regions. WaveNet emerged in the field of 
sound waveform extraction, which is a deep neural network for generating raw audio 
waveforms (Oord et al., 2016). Oord et al (2017) investigated probability density distillation, 
a novel method for training parallel feedforward networks to generate high-fidelity speech 
samples 20 times faster than real-time using learned WaveNet. Shen et al (2018) used a 
modified WaveNet model as a vocoder in combination with Tacotron 2 (a neural network 
structure for text-to-speech synthesis) to generate time-domain waveforms in spectrograms. 
Rethage et al (2018) used wavelet's end-to-end speech denoising learning method, which 
enabled researchers to create a model that maintains ‘in-phase’ signals in the waveform 
graph to overcome the shortcomings of amplitude spectrograms. Lluís et al (2019) developed 
a deep learning model based on spectrograms—DeepConvSep, which can be improved by our 
proposed Wavenet-based model and Wave-U-Net. Nakamura and Saruwatari (2020) 
proposed a governmental deep neural network based on the Wave-U-Net discrete small 
Wavelet Transform (DWT); DWT is used for time domain music source waveform separation. 
Wu et al (2021) proposed a pitch-adaptive waveform generation model called, Quasi-Periodic 
Wave Network (QPNet), to overcome the limited pitch controllability of fictitious wave 
networks (WNs) using pitch-dependent expanded convolutional neural networks (PDCNNs). 
In contrast to many audio synthesis efforts, where direct waveform creation models perform 
best, the state-of-the-art music source separation is the computational masking of the 
amplitude spectrum (Défossez et al., 2021). By modeling the correlation of the spectrogram 
along the time and frequency dimensions, Chen et al (2022) proposed a host- and network-
based time-frequency attention module and multiscale attention to effectively capture the 
association of music signals and explore the connection between music spectrograms and 
music waveforms. 
 
To enable the model to better choose whether the acoustics are in the spectral or waveform 
domain, Défossez et al (2021) investigated how to perform end-to-end hybrid source 
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separation. In recent years, song separation SVS algorithms dealing with encoder potential 
waveform graphs have improved in quantity and quality (Papantonakis et al., 2022).  
 
Pitch  
McLeod and Wyvill (2003) created software that can accurately display the pitch of notes 
being played or sung by a musician in real time. Some researchers have proposed that 
effective noisy speech multi-pitch tracking algorithms are essential for acoustic signal 
processing (Wu et al., 2003). Povey et al (2011) proposed a new speech recognition method 
using a Gaussian mixture model with the same number of Gaussians in all Hidden Markov 
Model stages, with each state having a 50-dimensional vector and a parameter to the GMM 
global mapping of the space. 
 
Pitch is one of the main auditory senses and plays a decisive role in the analysis of music, 
speech, and auditory scenes (Oxenham, 2012). Zatorre and Baum (2012) claimed that speech 
and musical melodies process pitch information differently with two pitch-related processing 
systems, one for coarse-grained approximate analysis and one for finer-grained accurate 
representation, which is unique to music. For an automatic speech recognition system, 
Ghahremani et al (2014)proposed a method for estimating pitch and articulation 
probabilities. The BABEL project investigated data from multiple languages and found 
considerable improvements over systems without pitch features and systems that obtained 
pitch and POV information via SAcC or getf0. Kim et al (2018) proposed a data-driven pitch 
tracking algorithm, CREPE, which outperformed the test-performing PYIN algorithm 
technique, thus far, which is based on a deep convolutional neural network operating directly 
on time-domain waveforms. Huang et al (2021) proposed an RNN-based encoder-decoder 
framework for simulating the state cost estimation and Viterbi backtracking channels of the 
RAPT algorithm. Experiments on tone extraction show that the proposed tone-tracking model 
is better than DNN-RNN and bidirectional variants. 
 
Hosoda et al (2021) proposed a narrowband speech pitch estimation technique using 
harmonic phase difference. Blok et al (2021) investigated an improved instantaneous 
frequency and power-based pitch estimation method, namely, IFE, to exploit the openness of 
pitch estimation in signal processing research. To improve the accuracy of fundamental 
frequency estimation, Queiroz and Coelho (2022) proposed a new method that classifies noisy 
speech into low- or high-frequency frames with that feature specifying the F0 frequency of 
the speech, classifying the frames as low or high frequency. This separation improves the F0 
estimation by correcting the candidates of classical fundamental frequency detection 
methods.  
 
The proposed technique outperforms existing solutions in terms of low/high-frequency 
separation accuracy. Bittner et al (2022) introduced a lightweight neural network for 
instrument transcription that supports multiple vocal outputs, which can be extended to 
many instruments (including the human voice) in this study. The multi-output structure of our 
model increases frame-level note accuracy by simultaneously predicting frame-level onsets, 
multiple pitches, and note activations. To control the extraction of attention-fused vocal 
melodies, Yu et al (2023) developed a neural harmonic perception network. Papantonakis et 
al (2022)investigated the effect of visual feedback on the ability to recognize and consolidate 
pitch information. 
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Rhythm  
Beginning with psychophysical studies of temporal rhythm and pitch perception, Krumhansl 
(2000) summarised psychological research on how this aspect is seen and recalled. Patterns, 
beats, and rhythms are the temporal components of rhythm. Music rhythmically activates the 
somatic and premotor systems (Thaut et al., 2014). By studying percussion, Repp (2005) 
showed that sensorimotor synchronization (SMS), the rhythmic coordination of perception 
and action, is most evident in music and dance. For studies of rhythmically responsive motor 
areas, Grahn and Brett (2007) suggested that basal ganglia and SMAs may mediate rhythmic 
perception outside of motor creation. Some scientists have also used rhythmic features to 
create a Thayers-based model of emotion to investigate the association between emotion 
and rhythm (Cu et al., 2012). Böck et al (2016) provided a then state-of-the-art method for 
extracting combined beats and low-tempo rhythms from audio sources. To provide music 
mixing with rhythmic synchronization, extraction of rhythmic patterns, and rhythm-based 
music retrieval, Lin et al (2010) developed methods that automatically select similar songs by 
a seed song and user-defined rhythmic parameters. Quinton (2017) evaluated the reliability 
of rhythmic feature extraction to improve the confidence of automatic beat structure analysis 
and MIR systems.  
 
The study provides two methods to automatically quantify metric modulation in audio 
recordings. Automatically ‘capturing rhythms’ and annotating musical beats to correct them 
have been a topic faced by scientists(Driedger et al., 2019). Driedger et al (2019) provided a 
novel dataset displaying beats and mathematically describing the automatic correction 
method, demonstrating its effectiveness. Dalton et al (2019) explored how rhythm analysis 
enables DAW rhythms to synchronize with source recordings. Research by Percival and 
Tzanetakis inspired Renoise's basic beat extraction technique. Böck and Davies (2020) 
evaluated cutting-edge deep neural network techniques for computational rhythm analysis, 
which improved the performance of the system by 6% by disassembling, examining, and 
reassembling such techniques. 
 
Chords  
The EEG of music cognition has rarely been studied (ERPs); Koelsch et al (2000) determined 
that musical context, task relevance of accidental chords, degree of violation, and probability 
influenced music processing. Pauwels & Peeters (2013) provided a new approach to music 
structure segmentation based on an integrated estimate of structural segments, keys, and 
chords in a probabilistic framework. A priori probabilities of key changes and chord transitions 
define the boundaries of the structural segments. To investigate neonatal responses to 
Western music, Virtala et al (2013) tested change-related mismatch responses (MMR) by 
encoding Western music chords in the neonatal brain using ERPs.  
 
Virtala et al (2014) study determined that musicology improves brain and behavioral 
recognition of Western music chords. Cambouropoulos et al (2014) study found that an 
idiom-independent chord type representation captured tonal simultaneity in every harmonic 
context, leading them to focus on harmonic representation and computational analysis (e.g., 
modal, modal, jazz, octave, and atonal). To explore chords with various affective properties, 
the work of Lahdelma and Eerola (2016) examined the affective nature of vertical harmonies. 
To anticipate the feelings of listeners of musical parts, Greer et al (2019) investigated a corpus 
of chords and lyrics matched to musical phrases, which were used to represent lyrics and 



 

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES 
Vol. 1 4 , No. 3, 2024, E-ISSN: 2222-6990 © 2024 
 

391 
 

chords in a shared vector space. To enable users to turn images into short chord-spin 
combinations, Polo and Sevillano (2019) developed Musical Vision, an emerging tool that 
interacts to construct fully variable mappings between color space and MIDI instrument and 
audio pitch space. 
 
Melody  
Polansky & Bassein(1992) used contour theory to assess pitch means in large-scale 
segmentation of waveforms, melodies, musical pieces, or other measurable features. Halpern 
and Zatorre (1999) used PET to examine brain activity associated with known melodies. 
Margulis (2005) provided an empirical technique for analyzing melodic anticipation and a 
model for rating the anticipatory nature of the melodic occurrence. Salamon and Gómez 
(2012) developed a unique method for extracting major melodies from polyphonic music 
recordings. In the same year, Salamon et al (2012) provided a unique method for genre 
identification by directly exploiting the high-level melodic qualities in the audio signal of 
polyphonic music. Later, Salamon et al(2014) summarised the difficulties in the design, 
evaluation, and application of melody extraction methods and proposed that melody 
extraction research faces problems in algorithm performance, development, and evaluation. 
Zhang (2022) proposed a LAM algorithm based on music melody contour feature extraction 
and oriented to music information retrieval. 
 
Beats  
Ariza & Cuthbert (2010) applied the beat module of the TimeSignature-music21 Python 
toolbox to read Humdrum and MusicXML and output Lilypond and MusicXML. Salamon et al 
(2012) found that beat perception is one of the auditory input recognition regular pulses that 
may contribute to the creation of music. The findings clearly support intrinsic beat perception. 
Degara et al (2011) used a novel probabilistic approach to calculate the duration between 
musical beat occurrences by explicitly modeling non-beat states. Holzapfel et al (2012) 
proposed a beat technique for tracking difficult musical samples without ground truth. Böck 
et al (2019) proposed a multi-task learning method for musical rhythm estimation and beat 
tracking trained entirely using rhythmic annotations. Böck et al (2019) used a new method of 
temporal convolutional networks to monitor audio in beats. In the same year, the researchers 
also designed a causal technique for determining the location of beats from an audio source 
(Richter, 2019).  
 
The data-driven automatic drumming transcription (ADT) model of Wang et al (2020) was 
unable to discriminate beats outside of a specified, small range of percussion-like 
vocabularies. The ADT problem for open vocabularies was overcome by adding a bit of 
learning. To eliminate the designed spectral features, Steinmetz and Reiss (2021) developed 
WaveBeat, a waveform-based end-to-end joint beat and downbeat tracking method. Pinto et 
al (2021) proposed a real-world beat-tracking strategy based on a relatively small temporal 
region of annotated beat positions and focused fine-tuning of the most advanced deep neural 
network to extract beats from music audio signals. To improve the accuracy and relevance of 
beat matching, Zhu (2022) developed a data mining-based error recognition system for dance 
movement and music beat matching. 
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Tempo  
To measure the effect of music on the assessment of happiness and depression, Bella et al 
(2001) concluded that tempo mastery precedes modality when interpreting the emotional 
tone conveyed by music. Karageorghis et al (2008)examined how music rhythm influences 
motor flow, intrinsic motivation, and music choice. To further understand the connection 
between music and emotion, Van Der Zwaag et al (2011) investigated how rhythm, pattern, 
and tempo influence mood. To test linear and nonlinear models for predicting musical 
tension, Farbood (2012) examined several musical factors: harmony, pitch, melodic 
anticipation, dynamics, onset frequency, tempo, beat, rhythmic regularity, and syncopation.  
 
Getz et al (2014) again studied to assess how stress, optimism, and musical training affect a 
person's desire to listen to music (for emotional control and/or cognitive stimulation) and the 
tempos they prefer. As the research on music and emotion deepens, some researchers 
believe in the importance of using music as a pre-game technique in sports by adjusting the 
volume and tempo of music whilst monitoring brain activity (Bishop et al., 2014). Another 
approach offered by Juslin et al (2014) attempted to explain musical emotions in terms of a 
set of target mechanisms triggered by various information in musical events (e.g., tempo). 
Percival & Tzanetakis (2014) proposed a reduced tempo estimation method for music with 
constant or near-constant tempo to retain tempo accuracy whilst reducing steps, parameters, 
and modeling assumptions. Building on previous research on tempo-emotion associations, 
Dobrota & Reić Ercegovac (2015) investigated topics aimed at understanding whether a 
correlation exists between listeners' preferred patterns and tempos and their individual 
personality attributes.  
 
Rosemann et al (2016)studied the effects of eye-hand coordination, performance tempo, 
complexity, and cognitive abilities of pianists. Neuhoff et al (2017) explored the challenges in 
tempo playing methods, variations in fine-tuning and expressiveness, temporal effects, and 
the implications of these results for music theory. Karageorghis et al (2018) assessed the 
interactive effects of musical tempo and intensity (volume) on the execution and subjective 
emotion of a basic motor skill by assessing whether this study further extends previous 
research. Coorevits et al (2019) again returned to the musical performance itself, examining 
the many effects that changes in musical tempo have on the ‘performance state’ or the 
articulation of the performer's movements. Bittner et al (2022) offered a way to understand 
musical tempo beyond listening to music by developing a Visual project and found that the 
number of notes per time unit and tempo also mattered. 
 
Timbre  
Pressnitzer et al (2000) concluded from a psychoacoustic perspective that psychoacoustic 
roughness increases when non-tonal orchestral timbres reduce musical tension. Patil et al 
(2012) studied musical timbres using a neurocomputational framework with a nonlinear 
classifier and 1,000 mammalian primary auditory cortical neurons and spectral-temporal 
receptive areas of simulated cortical neurons. 
 
Burger et al (2013) simultaneously investigated the relationship between rhythm, timbre, and 
motion, concluding that body motion reflects, reproduces, and predicts musical quality. Town 
and Bizley (2013) outlined human timbre perception and the spectral and temporal acoustic 
features that shape timbre in speech, music, and environmental sounds, suggesting some 
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worthwhile directions for research. Lui (2013) developed a technique for teaching musical 
timbre on mobile devices, and the model was self-trained by volume-tuning streamlined 
spectral data. To confirm that the pitch and timbre analysis process of music has unexpected 
similarities, Cousineau et al (2014) explored music with a sequence discrimination task. Rocha 
et al (2013) further investigated musical similarity, focusing on electronic dance music (EDM) 
using timbre similarity as a sub-similarity. To overcome the drawback that both operations in 
modulation analysis may erase useful modulation information, Ren et al (2015) proposed a 
two-dimensional representation of acoustic and modulation frequencies to extract joint 
features. 
 
Still, from the perspective of music retrieval classification, Eghbal-Zadeh et al (2015) used 
music timbre similarity and music i-vectors to derive song-level descriptors from frame-level 
temporal information for artist classification. Lu et al (2019) developed MUNIT to enable 
music classification, developed MUNIT for multimodal music style transformation and timbre 
enhancement using unsupervised, non-parallel data describing the multimodal scattering of 
musical situations. Kim et al (2019) created a neural music synthesis model with configurable 
timbres using sheet music and instrument data, using conditions for learning instrument 
embedding and WaveNet vocoder for the recurrent neural network. 
 
Hypothetical Future and Recommendation 
A review of research on music visualization found that for the aspect of music waveform 
research, a steady stream of researchers has emerged in recent years to study the connection 
between music graphs and music waveforms based on WaveNet. Pitch is also an integral part 
of music. In recent years, researchers have been using neural networks to model and study 
pitch in music. Rhythm is often associated with movement, and some scholars wish to study 
the effect of rhythm on motor performance, whilst others have classified music by extracting 
rhythmic features. Harmonic spins, on the other hand, are more linked to brain science. 
Research on the visualization of harmonic spins has focused more on the association with 
color. My interest in melody has been in melody extraction and prediction of melodic 
occurrence. The latest research is on the extraction of musical contour features by melody for 
the classification of music. The study of beats has been focused on the perception, tracking, 
and extraction of beats. The study of rhythm has focused more on the relationship between 
rhythm and motor performance. The study of tone has focused more on the area related to 
music classification. 
 
Through the above studies, we found that the waveforms, harmonies, and melodies are more 
closely related to visualization studies of music. Visualizing waveforms and melodic colors is 
easier. The main limitation is that the visualization of rhythm in music is more difficult, and 
most of the studies have focused on the effect of rhythm or beat on motion performance. 
The visualization of pitch and timbre has also received less attention, and the studies are more 
closely related to music feature retrieval and classification. 
 
Novelty 
In the future, with the continuous development of artificial intelligence in computer science, 
other researchers will use new models and new algorithms to extract the characteristics of 
the parameters of music and further research on how to use these new technologies in 
improving the study of music visualization. 
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