
2640

Static Security Analysis of Government and Non-
Government Android Mobile Applications in

Malaysia: A Comparative Study Using MobSF and
OWASP Mobile Top 10

Dhanesh a/l Paramasivam1, Noor Lees Ismail2, Abdulaziz Al-
Nahari3

1Faculty of Business and Technology, UNITAR International University, Kelana Jaya, Selangor,
2School of Information Technology, UNITAR International University, Kelana Jaya, Selangor,
3Information Technology Department, The University of Technology and Applied Sciences,

Nizwa, Oman
Email: 1mc211015323@student.unitar.my, 2abdulaziz.alnahari@utas.edu.om

Corresponding Author Email: lees@unitar.my

Abstract
In the current era, mobile phones have become a priority in everybody's life as they are
commonly used for communication, business purposes, and other important reasons. Mobile
applications are software created to run on a mobile device, and they have become part of
our day-to-day lives that many things can be accomplished such as shopping, social
networking, banking, and gaming, among others. Since mobile applications deal with sensitive
and confidential information that could be misused by malicious agents, security in mobile
applications is a crucial issue that must be tackled. In this context, we have performed a static
security analysis using a well-known and recognized tool called MobSF Security Framework
on Malaysian government and non-government Android mobile applications. This study’s
novelty is the static analysis to compare the security statuses of both categories of mobile
applications based on OWASP Mobile Top 10 and the tools’ scoring system. The most common
vulnerabilities for both government and non-government mobile applications were identified
based on OWASP Mobile Top 10 and security recommendations for each domain were
discussed. On the other hand, scoring results from MobSF Security Score identified the safest
and the least safe mobile applications among the tested applications.
Keywords: Mobile Applications, Static Analysis, Mobsf Security Framework, Owasp Mobile
Top 10, Government And Non-Government Apps

Introduction

Mobile phones are highly capable mobile computing gadgets that have significantly
transformed how individuals do business, communicate with online services, and obtain

 Vol 14, Issue 10, (2024) E-ISSN: 2222-6990

To Link this Article: http://dx.doi.org/10.6007/IJARBSS/v14-i10/22955 DOI:10.6007/IJARBSS/v14-i10/22955

Published Date: 26 October 2024

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2641

entertainment. Several services offered by a mobile phone are further boosted by an internet
connection, commonly supplied by a cellular network or Wi-Fi network. Internet access
permits the mobile phone to deliver and accept messages, surf the internet, backup files, etc.
Mobile phone’s functionality is heightened by an ecosystem of mobile applications covering
the whole range of functionality. A noteworthy rise has been observed in the utilization of
smartphones over the past era (PewResearch.Org, 2021). The instant advancement of
technology has made communication and data transfer exceptionally quick, easy, expedient,
and effortless. In this digital age, people anticipate being able to get the latest information
and news right away with a single tap of a button. Adopting these technological
advancements not only provides convenience and comfort but also offers critical
infrastructure and financial gains to local governments, as it eliminates the need for more
costly or complicated physical communication networks, especially in rural communities.

The vast acceptance of smartphones has also accelerated the development of mobile
applications that run on these gadgets. Mobile applications are primarily distributed via
accessible central repositories known as mobile application stores or marketplaces. Mobile
application stores allow third-party application developers to distribute their mobile
applications for users to download and use. Typically, application developers devote their
time to making mobile applications with the prospect of getting a return on their investment.
The mobile application industry has expanded exponentially in the last era, the number of
unique mobile phone subscribers is estimated to increase from 6.1 billion at the end of 2021
to 6.7 billion by the end of 2027, according to the Ericsson Mobility Report (Ericsson, 2022).
Android and iOS are known to be the two extremely common mobile phone operating
systems in the mobile application marketplace. Based on another study from Statista (Statista,
2022a), Android retained its standing as the prominent mobile phone operating system
globally within August 2022, conquering the mobile operating system market with a near 70
percent portion, whereas iOS occupies about 28 percent from the mobile operating system
marketplace. As of June 2022, Google Play Store had 2.65 million mobile applications (Statista,
2022b).

As the technological world persists in developing and evolving, the government needs
to maintain pace with these differences by designing multiple channels for providing
government-related services. The way the government is employing to enhance the manner
they communicate information to citizens is through creating mobile applications. With
mobile applications, government organizations can communicate valuable information such
as crisis alerts or specific news announcements swiftly and effortlessly. According to
42matters (42matters AG, 2022), there are more than 8,071 applications developed by
Malaysian developers on Google Play from the 3,117,565 applications and the Government
of Malaysia is sitting in the second position of the largest Malaysian application publishers.
Malaysian government mobile applications provide a variety of services such as general
information, announcements and news, financial services, government documents,
crowdsourcing programmes, well-being, and safety knowledge and learning facilities.

As the developing technology has undoubtedly made life simpler and more useful for
the whole world, it has additionally created many new risks, threats, and security problems
and opened the prospect door for cybercriminals. With mobile phone technology’s improved
approach to communicating and networking with people all across the world, it has

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2642

additionally been overlaying the path for simpler entry to our confidential and private
information. Mobile phones have undoubtedly provided considerable advantages to users,
but they also contribute their reasonable share of disadvantages, such as increases in security
threats and the destruction of user confidentiality. Information security is undoubtedly the
most prominent fear among mobile phone users as mobile applications generally deal with
highly confidential personal and private information that can be exploited and misused by
hateful threat actors that could damage users’ gadgets, personalities, along their status.
Security weaknesses in mobile applications can specifically platform or application; additional
issues involve server or client-side and system-associated incidents.

There are coding problems and security misconfigurations, system information that
could be stolen whilst being transferred or at static, etc. All through the research described
here, it can be observed that numerous safety issues are occurring in numerous mobile
applications, and it is essential to carry out assessments that allow us to assess the toughness
of the mobile applications versus the challenges. Though security assessment is not the only
important means to thwart security challenges, it assists in identifying as well as locating
security flaws occurring in mobile applications. Commonly, the absence or lack of security is
envisioned by the lack of security measures taken by software developers (Macy Bayern,
2019), which indirectly means that many of the software that goes into the production stage
is susceptible to one or more categories of cyberattacks. Likewise, cybersecurity attacks like
phishing emails (Sharma et al., 2020) and social engineering approaches for spear phishing
(Krombholz et al., 2014) are progressing actively with technical development which is flooring
the path for assailants to trick users into slipping into their system to obtain access to their
private data. In opposition to this, organizations like OWASP are continuously working to
discover, evaluate, and establish ways to alleviate software flaws and vulnerabilities,
contributing to the approaches, measures, classifications, and different ways of the
community to resolve problems due to software weaknesses. As many mobile applications
depend on customer data and continuously interconnect via network systems with remote
devices like API and servers, it is vital to make certain that the data is safeguarded inside the
mobile gadget while it is being communicated over a message transfer channel like Bluetooth,
Wi-Fi, etc.

Though new developments and innovations of technologies could offer the potential
of productivity improvements and new competencies, they may also present new dangers.
Hence, the situation is crucial for mobile application creators and security researchers to
know the current security status of mobile applications in Malaysia and the vulnerabilities
that are common, pervasive, and serious in mobile applications that are used by many
Malaysian citizens for their daily tasks. Intended for this purpose, we present a study that
includes all these characteristics together with the absent matters observed in the literature
evaluated.

Problem Background and Related Work

Cyber-attacks are becoming complicated, with attackers utilizing a broader range of
strategies to perform the attacks. A recent study (Ruth, 2021) described that mobile
applications published in the first quarter of 2021 through 18 of the best well-known
classifications have 39 vulnerabilities or weaknesses per application on average which can
influence the security and confidentiality of the mobile application users. Mobile phone’s

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2643

sophisticated processing abilities permit most mobile applications to store and deal with
sensitive and confidential identifiable information. Mobile phone users are utilizing various
types of mobile applications for their regular living routine, even with no understanding of
the possible adverse effects. Mobile phones’ increasing acceptance in users’ day-to-day
pursuits is defining and identifying mobile computing outpouring. To keep this condition
under control, it is important to focus on mobile applications’ confidentiality problems and
detect important worries from confidentiality and safety viewpoints. According to a recent
news article from the New Straits Times (Mokhtar, 2022), a group of hackers identifying
themselves as the ‘grey hat cybersecurity organization’ allegedly claimed that they could
break into the civil servants’ payroll system known as ePenyata Gaji (ePaySlip) to demonstrate
that there are vulnerabilities in the system. The information that could be retrieved from the
system includes full name, identification number, position, salary, mobile phone number, and
email address. There is also, an alleged data leak (New Straits Times, 2021) comprising the
data of 22.5 million Malaysian citizens who were born from 1940 to 2004, seemingly retrieved
from the National Registration Department (NRD) was being sold for US$10,000 on the dark
web.

The data was allegedly hacked and stolen from the NRD via MyIdentity’s application
programming interface. According to another news article from Bloomberg (Yantoultra Ngui,
2021), a vulnerability in the API (application programming interface) of Malaysia’s Covid-19
contract tracing application, MySejahtera was allegedly utilized by cybercriminals to send fake
emails to the users. Complaints about getting unknown OTP and fake emails from
MySejahtera application were lodged by the application users after they received OTP at
unusual hours and even emails saying that they had been confirmed Covid19 positive. As
government mobile applications could deal with a significant amount of Malaysian resident’s
information and personal data, the impact of a cyber-attack could be devastating. Based on a
study by Homeland Security on the security of mobile devices, dangers, and perils to the
Government’s usage of mobile devices are factual and occur throughout all components of
the mobile phone environment (Homeland Security, 2017). With vulnerable government
mobile applications, sensitive citizen data, such as Personally Identifiable Information (PII)
could get easily compromised, which might be severe for users. One could argue that by not
sufficiently safeguarding their applications, governments are putting citizen’s sensitive
personal data at risk. In this context, security is considered a major part of a mobile
application. Hence, the assessment of the security of government mobile applications should
be thoroughly conducted to ensure it is safe to be used by citizens of Malaysia. Therefore, the
main objective of this paper is:

• To evaluate and compare the current security status of the Malaysian government and
non-government mobile applications based on OWASP Mobile Top 10 risks and MobSF
Security Score

OWASP Mobile Top 10

The Open Web Application Security Project (OWASP) is a virtual society of security
professionals that has developed easily accessible knowledge resources, documents, and
tools to better develop safe web and mobile applications. The OWASP foundation offers
security recommendations and suggestions for software security. Every one of the OWASP
tools, documentation, and conferences are available for free and accessible to everyone
concerned with enhancing and also understanding application security. A significant

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2644

contribution of OWASP to mobile application security is the documentation of the top 10
flaws and vulnerabilities that are present in mobile applications under the name OWASP
Mobile Top 10. The OWASP Mobile Top 10 (OWASP, 2016) list comprises common security
weaknesses as well as vulnerabilities in mobile applications and provides the best
recommendations to assist in remediating and reducing these security concerns. The OWASP
Mobile Top 10 list is an exceptional source for mobile application creators who choose to
develop safe and reliable mobile applications. This list is revised and updated based on data
from numerous security-dedicated individuals and organizations. Weaknesses consist of flaws,
vulnerabilities, coding issues, bugs, errors in implementation, and every other fault that can
cause a cyber-attack. This list is important to help draw attention to security vulnerabilities in
mobile applications and develop appropriate defenses that can cope with security attacks
that actively exploit application functionality.

In this perspective, the OWASP Foundation has collected numerous methodologies

and the most widespread weaknesses in mobile applications. Consequently, OWASP
established the top ten mobile threats in its final edition in the year 2016 as a beginning
standard for application developers and mobile security researchers to assess mobile
applications. Ashleigh Lee (2018) tested mobile applications accessible on the Google Play
Store and Apple Store and uncovered that 85% of the mobile applications breach at least an
item 15 listed in the OWASP Mobile Top 10 threats. Among the tested mobile applications,
half of them have insecure data storage, and just about an equal number of applications
utilize insecure communication.

Figure 1. OWASP Mobile Top 10 violation rules

Based on surveys and feedback gathered from the international mobile and security
community, OWASP has compiled a list of the top ten mobile security risks (OWASP, 2016a).
A summary of the OWASP Mobile Top 10 categories is as follows:

Improper Platform Usage
Improper platform usage represents the condition in which mobile application creators fail to
employ or improperly use an element of the mobile phone’s operating system (OWASP,
2016b). According to the report from Positive Technologies, one-third of weaknesses in
Android mobile applications are from setting shortcomings (Positive Technologies, 2019).

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2645

These vulnerabilities generally are because of mishandling of the platform application
interface programming (API) and the deficiency of employing appropriate safety mechanisms
recommended by OWASP. It also involves mismanagement of Android intents, platform
permissions, or security mechanisms such as TouchID or the Keychain.

Insecure Data Storage
Insecure data storage is the subsequent vulnerability from the OWASP Mobile TOP 10.
According to the report from Positive Technologies, 76% of mobile applications contain this
security flaw (Positive Technologies, 2019). Problems associated with unsafe information
storage and unintentional data leaks are included in this group. Failure to encrypt or safely
store data is a popular issue that can lead to data leaks. File systems are effortlessly available
for an attacker that either acquired the physical device or with the assistance of malware has
access to sensitive data storage. The data leakage could also occur because of weaknesses in
frameworks, hardware, or because of rooted devices (Sai et al., 2019). Mobile applications
deprived of appropriate checks for information leaks could endure common exploitable
weaknesses or flaws.

Insecure Communication
Insecure communication issues involve transmission as well as inter-process transmission
problems. In accordance with the report from Positive Technologies, 35% of mobile
applications transmit information to external systems insecurely and twenty-nine percent
mobile applications use inter-process communication insecurely (Positive Technologies,
2019). These security problems occur once the information being transferred fails to be
properly safeguarded during communication with trustworthy endpoints. It also arises when
network traffic is sent over an unsecured communication channel which could leak sensitive
data to be captured or eavesdropped by a threat actor.

Insecure Authentication
Based on OWASP, a mobile application demonstrates insecure authentication once it
communicates with sources of a server without exhibiting credentials like user ID and
password (OWASP, 2016c). Mobile applications working with private and confidential
information such as individual information, health, or financial records must employ adequate
authentication of a user. According to the report from Positive Technologies, 53% of mobile
applications fail to keep authentication information in a safe approach, and 41% are found to
execute local authentication (Positive Technologies, 2019). This category encompasses issues
that arise after the authentication and session organization of end users are performed
inadequately. Authentication vulnerabilities permit threat agents to bypass identity control
systems by presenting service call to the applications backend server. Poor or non-existent
authentication systems allow an adversary to gain access to confidential data or sensitive
application functionality. One instance of insecure authentication is the situation when the
mobile application allows the appliance to accomplish a back-end API call without the access
token.

Insufficient Cryptography
According to OWASP, insufficient cryptography happens when a mobile application employs
a faulty method or a vulnerable algorithm (OWASP, 2016d). These security issues occur when
cryptography is employed on the confidential information being kept or transmitted,

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2646

however, the cryptography that is employed itself does not comply with the necessary
security requirements. Application of weak encryption algorithms or not complying with
security best practices in the encryption process will make it potential for threat agents to
exploit and break the encrypted data transferred or kept on the device.

Insecure Authorization
Based on OWASP, this category includes issues linked to authorization such as the existence
of Insecure Direct Object Reference (IDOR) weaknesses, obscure endpoints, user role or
authorization transmissions, etc (OWASP, 2016e). Through authorization, the mobile
application must validate if the authenticated user holds the authorization to execute a
particular process. Failure to do so could put the mobile application and the back end in
danger. Concerns with the permission of application users to make use of various elements
of the application are incorporated within this group. Application of inadequately designed
authorization schemes can lead to threat agents evading permission controls and gaining
access to confidential data or functionality that is preserved for users with sufficient
permission levels. An attacker or a rogue user could compromise the security of the mobile
application in a situation where the mobile application permits the user to execute API
requests with no appropriate authorization.

Client Code Quality
According to OWASP, this group comprises code-level complications such as memory leaks or
buffer overflow (OWASP, 2016f). Applications that permit nontrusted code to be accepted as
input and then executed are in danger of attacks that can result in memory leakages or
corruption. The code-level errors could facilitate the assailant to take advantage of business
logic to evade the security controls in place.

Code Tampering
Mobile applications operate in a setting that is not supervised by the application developers
(Sai et al., 2019). This permits assailants to alter the application program code to modify API
requests or inject a backdoor to obtain confidential information. Assailants could alter the
application code and rebuild the mobile application before issuing it again to users. Making
modifications to the sources or application code in the mobile application binary or some
other manner that alters the initial application is included beneath this group. An
unauthorized and altered version of an application source code can present a threat as an
attacker may introduce malicious code into the repackaged application and upload it to the
mobile application stores.

Reverse Engineering
Based on OWASP, this category is linked to the extraction of the source code, algorithms,
libraries, and other resources from the binaries and executables archives (OWASP, 2016g).
Mobile applications could be reverse-engineered, and the application code, resources, and
additional assets could be abused to obtain private or confidential data like intellectual
property, information related to the cryptography implementation, and back-end endpoints.
By decoding and evaluating an application's core binary, it is likely for an attacker to
determine the application's source code and resources implanted within the mobile
application. The position possibly will permit the assailant to ascertain and identify the logic
of the application in position as well as the deduction of application code, libraries, or

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2647

additional resources in the application. After defining the application logic, the assailant will
be able to find weaknesses to utilize in the model and stream of data.

Extraneous Functionality
This category is linked to the application of additional functionalities that are not needed or
not planned in the mobile applications by the developer. Unintentional backdoor functions
that are malicious or another internal development problem that could cause security abuse
are included in this classification. Occasionally, extra code or features are left inside the
source code that is not completely exposed to users. Creators may have left it to incorporate
obscure backdoor functionality to backends or other internal expansion mechanisms that
could be exploited.

Static Analysis by MobSF

The static analysis method is commonly used to evaluate the security level of mobile
applications (Li et al., 2017). During static assessment, the application code will be analyzed
to understand the application path to identify application elements. Automated tools such as
Mobile Security Framework (MobSF) permit to automate this process. Static analysis
generally means decompiling the APK file of a mobile application to its corresponding XML
and Java files. Static analysis defines the technique employed to examine a mobile application
without execution. The objective is to identify vulnerabilities and flaws in the application.
Typically, automated tools are employed to ensure the procedure gets simpler. The said tools
examine the code and go through the browsable activities, application permissions and more
extra functions. This might, for instance, be confidential information that is hardcoded such
as credentials or cryptographic keys (Lindström & Marstorp, 2018). To execute static analysis,
a static analysis tool should include features to analyze XML with accuracy and correctness.
Java files can be extracted by a de-compiler known as DEXtoJar (Skylot, 2019). A static analysis
tool decompiles the computer code of an APK file to human being readable format for it to
understand the code and detect the vulnerabilities that a mobile application could have. The
plus points of static analysis include:

a) It is faster compared to the dynamic approach.
b) It involves fewer hardware sources compared to dynamic analysis.
c) The complete application code and manifest information which comprises of metadata
about the application are thoroughly examined.

A significant number of weaknesses could be identified using static assessment like
confidential data leakages, illegal access to important and confidential resources, and intent
infusion. This can be also employed to discover misuse of authorization, power utilization,
duplicate identification, and test generation. Lastly, it can also detect cryptographic
application issues and code verification as well (Li et al., 2017). Mobile Security Framework
(MobSF) is an automated and open-source collective tool that could execute static as well as
dynamic analysis on Android and iOS platforms. MobSF is commonly used by application
developers and security researchers to carry out safety assessments on mobile applications
(Papageorgiou et al., 2018). Moreover, previous research has indicated MobSF’s ability to
identify a comprehensive scale of Android security problems (Ranganath and Mitra 2020).
MobSF is also a more user-friendly and easier-to-use static code analyzer based on a study
comparing the strengths of multiple static analyzers available (Joseph, 2021).

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2648

MobSF is built based on Python MobSF offers a graphical user interface to upload the

mobile application files and execute a thorough static analysis on the uploaded application
file. It presents the assessment findings in the web interface portal, and it could additionally
produce the output in JSON format over Rest API. MobSF separates all the metadata of the
mobile application comprising the application title, the launcher activity, package title,
minimum and maximum SDK, built name, and version code. It also traces the manifest
alongside every activity, receiver, service, and provider for the mobile application. It executes
numerous categories of security assessment such as examining the signer certificate, testing
authorizations, manifest assessment, binary assessment, file assessment, code assessment,
and malware assessment. Amongst the assessments that the tool offers, the manifest
assessment and code assessment comprise the outcomes of the static evaluation associated
with the majority of the safety flaws and weaknesses (Maharjan, 2020)

Research Methodology

This paper aims to carry out a static security analysis on five Malaysian government
and five non - government mobile applications with a focus on only Android apps using a tool
recommended in OWASP Testing Guide (OWASP, 2022). The methodology in this research
starts by choosing the aimed mobile applications and gathering the APKs. Assessment will be
carried out on the program code of the mobile application by static analysis approach which
will be performed by utilizing a comprehensive security assessment tool. Once the
examinations are finished, the outcomes will be documented and tabulated in the findings
section and appropriate recommendations will be discussed.

Figure 2. Static analysis process

Information Gathering
For this study, a total of ten mobile applications comprised of five Malaysian government and
five non-government mobile applications available in Malaysia were chosen. The government
mobile applications assessed in the experiment were chosen based on the Malaysian
Government Mobile Application Gallery (GAMMA) Portal. GAMMA is an archive for mobile
applications created and distributed by Malaysian Government organizations. The
government of Malaysia has established GAMMA to make it simpler for Malaysians to
download applications necessary for government-related matters. Table 1 describes every of
the selected mobile applications together with the built number utilized in the assessment,
the category and the download count.

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2649

Table 1
Selected Applications

No APP Name Category Developer Version Downloads

1. MySejahtera Health &
Fitness

Government
of Malaysia

2.0.6 10M+

2. MyUBAT Medical Government
of Malaysia

1.7.7 100K+

3. GAMMA.my Productivity Government
of Malaysia

1.0.11 10K+

4. MyGov Portal Social Government
of Malaysia

2.1 10K+

5. Penghijauan
Malaysia

Education Government
of Malaysia

1.2.1 5K+

6. M2U MY Finance Malayan
Banking
Berhad

9.1 10M+

7. TNG eWallet Finance TNG Digital
Sdn Bhd

1.7.81 10M+

8. i-Akaun Finance KWSP 6.6 5M+

9. Pizza Hut Malaysia Food Pizza Hut
Digital

Venture

2.0.6 1M+

10. myTNB Business Tenaga
Nasional

2.6.7 1M+

Static Analysis

During static analysis, the mobile application’s source code is examined and analyzed
to make sure proper implementation of security controls is in place. The APK files of all the
mobile applications were utilized to execute static analysis through the chosen tool to identify
potential vulnerabilities in it. The chosen tool operates thorough evaluations of the
mechanisms of the mobile application, tests for vulnerabilities, and examines the code to
achieve complete code analysis. The code analysis tests for many kinds of security problems
including hardcoded information, certificate issues and blacklisted malicious domains, and
cryptography issues. A popular security assessment tool recommended in the OWASP Testing
Guide (OWASP, 2022) will be primarily utilized in the evaluation and examination of this
security assessment. Mobile Security Framework (MobSF) (Github, n.d.-a) is an automated
application designed to undertake security assessments on mobile applications for the most
popular mobile operating systems such as iOS and Android. The framework was created as a
web service with a graphical user interface that features a dashboard to describe the findings.

This framework employs special features upon performing assessment and

vulnerability analysis, such as mobile application component detection and configuration
discovery such as activities and services. For the Android operating system, it performs
Manifest file assessment, de-compilation of the source code, permission evaluation, and
categorization. Toward the end of the static assessment, MobSF produces a report along with
the detected vulnerabilities and a score known as the MobSF Security Score which is
calculated based on the detected flaws. This paper focuses on those vulnerabilities that have

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2650

a corresponding mapping in the OWASP Mobile Top 10 along with the calculated security
scores.

After the execution of static analysis, the findings will be thoroughly analyzed and
mapped using OWASP Mobile Top 10 together with recommendations. The Open Web
Application Security Project (OWASP) is a non-commercial, worldwide, community-managed,
open-source software project with many members and participants engaged together to
enhance software safety measures. It functions as a resource for application creators and
developers to safeguard mobile applications and web applications. The plan was originally
published to assist in securing web applications from vulnerabilities. Alongside the
development of innovative mobile applications, OWASP also published the mobile application
edition comprising the topmost widespread mobile application threats. The current work
includes all threats demonstrated in the OWASP listing in the most recent version released in
2016. The OWASP Mobile Top 10 (OWASP, 2016a) lists the security weaknesses and
vulnerabilities developers should be informed of when developing mobile applications.
OWASP Mobile's Top 10 list of security issues are grouped based on an international survey
of security practitioners and application developers. The objective is to identify the key areas
of concern in terms of mobile application security vulnerabilities.

Findings

The scoring results of static analysis on the government and non-government mobile
applications based on MobSF Security Score are presented in Table 2 and Table 3. After MobSF
performs static analysis on a mobile application, it produces a score representing its
evaluation of application security known as the MobSF Security Score. The MobSF Security
Score is the tool’s specific grading procedure that analyses the application, and a security
score will be given by taking into consideration the application signer certificate,
authorizations, manifest assessment, and analysis of the application’s source code.

Table 2
MobSF Security Score of Government Applications

Application MobSF Security Score

MySejahtera 52/100

MyUBAT 51/100

GAMMA.my 45/100

MyGov Poral 55/100

Penghijauan Malaysia 52/100

Table 3
MobSF Security Score of Non-Governement Applications

Application MobSF Security Score

M2U MY 55/100

TNG eWallet 55/100

i-Akaun 52/100

Pizza Hut Malaysia 56/100

myTNB 52/100

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2651

One of the most fascinating elements of the MobSF tool is the code analysis portion.
In this section, it can be observed that MobSF has examined and analyzed the components
and behaviors of the application based on best practices and baselines such as OWASP MSTG
and plotted the weaknesses discovered with OWASP Mobile Top 10risks. The mobile
application assessment is primarily based upon documentation and techniques enclosed in
OWASP Mobile Top 10, which comprises ten known issues in mobile applications that are
explored and frequently stumbled upon in the creation of mobile applications. The results
from MobSF list the identified vulnerabilities within the targeted mobile application as seen
in Table 4 where the issues discovered have been matched against OWASP Mobile Top 10.
Table 4 summarizes the security vulnerabilities found during the static assessment of the
mobile applications with MobSF.

Table 4
Summary of vulnerabilities detected by MobSF

Mobile
Application

Category Severity Vulnerability OWASP Top
10

MyUBAT Government
Application

High The app uses the encryption
mode CBC with PKCS5/PKCS7
padding. This configuration is
vulnerable to padding oracle
attacks.

M5:
Insufficient
Cryptography

Penghijauan
Malaysia

Government
Application

High The app uses the encryption
mode CBC with PKCS5/PKCS7
padding. This configuration is
vulnerable to padding oracle
attacks.

M5:
Insufficient
Cryptography

GAMMA.my Government
Application

Warning The app can read/write to
External Storage. Any App can
read data written to External
Storage.

M2: Insecure
Data Storage

MyGov
Portal

Government
Application

Warning The app can read/write to
External Storage. Any App can
read data written to External
Storage.

M2: Insecure
Data Storage

MyUBAT Government
Application

Warning The app can read/write to
External Storage. Any App can
read data written to External
Storage.

M2: Insecure
Data Storage

Penghijauan
Malaysia

Government
Application

Warning The app can read/write to
External Storage. Any App can
read data written to External
Storage

M2: Insecure
Data Storage

MyUBAT Government
Application

Warning The app creates temp file.
Sensitive information should
never be written into a temp file.

M2: Insecure
Data Storage

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2652

Penghijauan
Malaysia

Government
Application

Warning The app creates temp file.
Sensitive information should
never be written into a temp file.

M2: Insecure
Data Storage

MyGov
Portal

Government
Application

Warning The app uses SQLite Database and
executes raw SQL query.
Untrusted user input in raw SQL
queries can cause SQL Injection.
Also, sensitive information should
be encrypted and written to the
database.

M7: Client
Code Quality

MySejahtera Government
Application

Warning The app uses SQLite Database and
execute raw SQL query. Untrusted
user input in raw SQL queries can
cause SQL Injection. Also sensitive
information should be encrypted
and written to the database.

M7: Client
Code Quality

MyUBAT Government
Application

Warning App uses SQLite Database and
execute raw SQL query. Untrusted
user input in raw SQL queries can
cause SQL Injection. Also sensitive
information should be encrypted
and written to the database

M7: Client
Code Quality

MyGov
Portal

Government
Application

Warning Files may contain hardcoded
sensitive information like
usernames, passwords, keys etc

M9:Reverse
Engineering

MySejahtera Government
Application

Warning Files may contain hardcoded
sensitive information like
usernames, passwords, keys etc.

M9:Reverse
Engineering

MyGov
Portal

Government
Application

Warning Insecure WebView
Implementation. Execution of
user-controlled code in Web View
is a critical Security Hole

M1:
Improper
Platform
Usage

MyUBAT Government
Application

Warning The App uses an insecure Random
Number Generator.

M5:
Insufficient
Cryptography

Penghijauan
Malaysia

Government
Application

Warning The App uses an insecure Random
Number Generator

M5:
Insufficient
Cryptography

i-Akaun Non-
Government
Application

High The App uses the encryption
mode CBC with PKCS5/PKCS7
padding. This configuration is
vulnerable to padding oracle
attacks.

M5:
Insufficient
Cryptography

M2U MY Non-
Government
Application

High The App uses the encryption
mode CBC with PKCS5/PKCS7
padding. This configuration is

M5:
Insufficient
Cryptography

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2653

vulnerable to padding oracle
attacks.

i-Akaun Non-
Government
Application

Warning App can read/write to External
Storage. Any App can read data
written to External Storage

M2: Insecure
Data Storage

M2U MY Non-
Government
Application

Warning App can read/write to External
Storage. Any App can read data
written to External Storage

M2: Insecure
Data Storage

myTNB Non-
Government
Application

Warning App can read/write to External
Storage. Any App can read data
written to External Storage

M2: Insecure
Data Storage

i-Akaun Non-
Government
Application

Warning App creates temp file. Sensitive
information should never be
written into a temp file

M2: Insecure
Data Storage

M2U M Non-
Government
Application

Warning App creates temp file. Sensitive
information should never be
written into a temp file

M2: Insecure
Data Storage

i-Akaun Non-
Government
Application

Warning App uses SQLite Database and
executes raw SQL query.
Untrusted user input in raw SQL
queries can cause SQL Injection.
Also, sensitive information should
be encrypted and written to the
database.

M7: Client
Code Quality

M2U MY Non-
Government
Application

Warning App uses SQLite Database and
executes raw SQL query.
Untrusted user input in raw SQL
queries can cause SQL Injection.
Also, sensitive information should
be encrypted and written to the
database

M7: Client
Code Quality

myTNB Non-
Government
Application

Warning App uses SQLite Database and
executes raw SQL query.
Untrusted user input in raw SQL
queries can cause SQL Injection.
Also, sensitive information should
be encrypted and written to the
database

M7: Client
Code Quality

Pizza Hut
Malaysia

Non-
Government
Application

Warning App uses SQLite Database and
executes raw SQL query.
Untrusted user input in raw SQL
queries can cause SQL Injection.
Also, sensitive information should
be encrypted and written to the
database

M7: Client
Code Quality

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2654

i-Akaun Non-
Government
Application

Warning Files may contain hardcoded
sensitive information like
usernames, passwords, keys etc

M9: Reverse
Engineering

M2U MY Non-
Government
Application

Warning Files may contain hardcoded
sensitive information like
usernames, passwords, keys etc

M9: Reverse
Engineering

myTNB Non-
Government
Application

Warning Files may contain hardcoded
sensitive information like
usernames, passwords, keys etc

M9: Reverse
Engineering

Pizza Hut
Malaysia

Non-
Government
Application

Warning Files may contain hardcoded
sensitive information like
usernames, passwords, keys etc

M9: Reverse
Engineering

i-Akaun Non-
Government
Application

Warning Insecure WebView
Implementation. Execution of
user-controlled code in WebView
is a critical Security Hole

M1:
Improper
Platform
Usage

i-Akaun Non-
Government
Application

Warning SHA-1 is a weak hash known to
have hash collisions.

M5:
Insufficient
Cryptography

M2U MY Non-
Government
Application

Warning SHA-1 is a weak hash known to
have hash collisions.

M5:
Insufficient
Cryptography

Pizza Hut
Malaysia

Non-
Government
Application

Warning SHA-1 is a weak hash known to
have hash collisions.

M5:
Insufficient
Cryptography

i-Akaun Non-
Government
Application

Warning The App uses an insecure Random
Number Generator.

M5:
Insufficient
Cryptography

M2U MY Non-
Government
Application

Warning The App uses an insecure Random
Number Generator.

M5:
Insufficient
Cryptography

myTNB Non-
Government
Application

Warning The App uses an insecure Random
Number Generator.

M5:
Insufficient
Cryptography

From the vulnerabilities listed in Table 4, it can be observed that the detected issues can be
categorized into 5 categories from the OWASP Mobile Top 10 as listed below.

M1: Improper Platform Usage
This classification includes the abuse of platform elements and the non-success to utilize
platform protection mechanisms. From the perspective of this study, the assessment revealed
that one application from both government and non-government applications is vulnerable
to this weakness because they offer insecure WebView implementations. This weakness can
weaponize numerous vulnerabilities, which vary according to the underlying vulnerable
function. In the existence of the stated vulnerability, a cybercriminal might feasibly strategize
man-in-the-middle attacks and perform Cross-Site Scripting (XSS) attacks (Security Tips, n.d.).

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2655

M2: Insecure Data Storage
There are numerous techniques to examine insecure data storage, including assessing the
security of log files, cookies, XML data, binary data, and SQL databases (SQLite) as well as
internal and external storage, content service providers, and log files and external storage.
Attackers and malicious programmes may exploit the saved data to obtain sensitive and
private information, which may result in data misuse. Developers frequently utilize
MODE_WORLD_READBALE & MODE_WORLD_WRITABLE to keep information in applications
to be retrieved by another application and usually fail to utilize encryption for the safety of
confidential data. From the standpoint of our research, the analysis revealed that 7 out of 10
mobile applications are vulnerable to this weakness. There are two findings discovered under
this category. First, the program creates a temporary file and has access to external storage.
Generally, a convenient way to store files is to utilize external file storage which normally
presents a greater amount of disc space compared to internal storage. However, files created
on the external storage are readable and writable which means a malicious application having
the permissions WRITE_EXTERNAL_STORAGE or READ_EXTERNAL_STORAGE could possibly
read sensitive data from the files that other applications have saved on the external storage.
External storage could also possibly be removed by the user, making the files unobtainable to
the application. The second finding that relates to the category is the application generates
temporary files. It is advisable to never enter sensitive data into a temporary file. Generating
and employing insecure temporary files can make application and system data vulnerable to
attacks. The best practice is to prevent storing sensitive data in temporary files as it is a very
popular reason for the majority of attacks on applications (Richard Lewis, 2006).

M5: Insufficient Cryptography
The use of cryptography on information or data utilized in a mobile application is enormously
suggested so the information can be secured and will not be easily retrievable by attackers.
Poor cryptography implementation will not be able to protect the data or confidential
information since attackers can easily get the data or information. Examinations for
cryptography are made for an explanation of weak cryptographic instances. In view of our
research, the analysis revealed that 6 out of 10 mobile applications are vulnerable to this
weakness. There are three findings discovered under this category. Firstly, the application
utilizes the encryption method CBC along with PKCS5/PKCS7 padding. The padding oracle
attack is susceptible to this arrangement. Padding is a general practice in cryptography that
involves adding data at the start, central or end of a message before it is encrypted, being
essential for aims of compatibility of the cryptographic algorithm that necessitates, for
example, an exact number of characters or bytes for the right operational of the cryptographic
function. Oracle Padding is an attack that decrypts messages and reveals, the padding validity
state, permitting the attacker to retrieve sensitive information or escalate their privileges,
without the need to get the key used in cryptographic operations (Team Sesame, 2017). The
attack is frequently linked with the CBC (Cipher-Block Chaining) encryption mode that
encrypts data merely in blocks of particular sizes, so it is essential to use padding for the
proper functioning of its algorithm. The padding schemes generally used in these operations
are PKCS5 and PKCS7. In the source code contained in the analyzed applications, it was found
that CBC mode encryption is employed with PKCS5 or PKCS7 padding, creating a potential
Oracle Padding attack vector in the applications. Secondly, some applications use an insecure
random number generator. When a pseudo-random number generator is used, an attacker
can compute and anticipate the security-sensitive value that will be generated. Thirdly, some

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2656

of the assessed mobile applications are also found to be signed with SHA-1 hashing algorithm.
A weak hash known to have collisions is SHA-1 (Stevens et al., 2017). It is a legacy
cryptographic hashing algorithm that is no longer considered secure. Digital certificates that
use the SHA-1 hashing technique may make it possible for attackers to fake material, carry
out phishing attacks, or launch man-in-the-middle assaults.

M7: Client Code Quality
A lack of quality control in the code may result in problems that prevent the programme from
running properly or even at all. Applications that don't filter input allow malevolent users to
modify the application process, execute services without authentication or authorization, and
do anything they want. From the perspective of our research, the analysis revealed that 7 out
of 10 mobile applications are vulnerable to this weakness. The affected mobile applications
were found to be using SQLite Database and performing raw SQL queries. Raw SQL queries
that contain untrusted user input may result in a local SQL injection vulnerability in the mobile
application. The best strategy is to use prepared SQL statements that are outside of the user's
control (OWASP, n.d.-b). Sensitive data should also be encrypted before being written to the
database.

M9: Reverse Engineering
In the field of application development, reverse engineering is a technique frequently used to
alter behavior and analyze source code. The mobile application's flow, the cryptography used,
the application algorithms, the backend server information, and other essential information
can all be gathered via reverse engineering techniques. From the perspective of our research,
the analysis revealed that 6 out of 10 mobile applications are vulnerable to the weaknesses
under this category. The impacted applications may have files with sensitive information such
as usernames, passwords, keys, etc. hardcoded in them, according to the analysis of MobSF.
Hardcoding sensitive data exposes it to the risk of being accessed by attackers, including
usernames, passwords, server IP addresses, and encryption keys (Piątek, 2022). Anyone with
access to the class files can find the sensitive data by decompiling them and using them in
future attacks. Therefore, mobile applications must not hardcode sensitive information.

Conclusion

The market for mobile applications is growing, and security issues follow suit. Due to
the sensitive user data that mobile applications manage, security is a primary issue for
smartphone users and is no longer a voluntary subject. Information theft could lead to major
issues like fraud and identity theft. In terms of mobile application security, the OWASP
foundation has issued a list of the 10 most frequent hazards of mobile application platforms
that emphasizes the security flaws & vulnerabilities developers must watch against while
creating mobile applications.

In this paper, we have performed static analysis using a tool known as MobSF on

government and non-government mobile applications to evaluate and compare the current
security status of Malaysian government and non-government mobile applications based
upon OWASP Mobile Top 10 risks. The reports that we obtained from the static analysis in
MobSF were further studied and the findings were presented. From the analysis result, we
found that most of the tested mobile applications have at least one vulnerability listed in
OWASP Mobile Top 10. Among the tested mobile applications, only one application from the

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2657

non-government category was found to be free from vulnerabilities according to the
categories of OWASP Mobile Top 10. The common issues that affect the mobile applications
of both government and non-government were also identified through this study. Insecure
Data Storage was found to be the biggest contributor to the vulnerabilities in government
mobile applications and Insufficient Cryptography was found to be the main contributor to
the vulnerabilities in non-government mobile applications.

Apart from that, the MobSF Security Score for each tested mobile application was

identified, and the highest scorer was found to be Pizza Hut Malaysia from the non-
government application and the least scored application was GAMMA.my from the
government application. Many organizations tend to develop mobile applications internally
which helps them to exponentially save costs without the need to pay external parties. This
could be beneficial to the organization in saving costs but it is necessary to pay attention to
the capability of the in-house developers to produce well-secured mobile applications. As
most application development vendors must ensure proper security controls and policies are
in place for application development, they tend to be more focused on the overall security of
the application as well. This is an important part to consider when a mobile application is
being developed. Proper security controls, security policies, and baselines can ensure the
development of a secure mobile application. Understanding that nothing is truly secure and
that security is never a given makes it essential to take precautions and stay as secure as you
can.

In conclusion, this study conducted a static analysis using MobSF on Malaysian government
and non-government mobile applications to evaluate their security status based on OWASP
Mobile Top 10 risks. The findings revealed that most applications had at least one
vulnerability, with Insecure Data Storage being the major issue for government apps and
Insufficient Cryptography for non-government apps. Only one non-government app was free
of vulnerabilities, while Pizza Hut Malaysia had the highest MobSF Security Score, and
GAMMA.my scored the lowest. The study emphasized the importance of robust security
practices, particularly for internally developed apps, to ensure a secure mobile environment.
Future research could explore new methods to enhance mobile application security.

Acknowledgment
The authors would like to thank UNITAR International University for the publication of this
research.

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2658

References
Alanda, A., Satria, D., Mooduto, H. A., & Kurniawan, B. (2020). Mobile application security

penetration testing based on OWASP. IOP Conference Series: Materials Science and
Engineering, 846, 012036. https://doi.org/10.1088/1757-899X/846/1/012036

Android Developers. (n.d.-a). Application Fundamentals. Retrieved from
https://developer.android.com/guide/components/fundamentals.

Android Developers. (n.d.-b). Introduction to Activities. Retrieved from
https://developer.android.com/guide/components/activities/intro-activities.

Android Developers. (n.d.-c). Services Overview. Retrieved from
https://developer.android.com/guide/components/services.

Android Developers. (n.d.-d). Broadcasts Overview. Retrieved from
https://developer.android.com/guide/components/broadcasts.

Android Developers. (n.d.-e). Content Providers. Retrieved from
https://developer.android.com/guide/topics/providers/content-providers.

Android Developers. (n.d.-f). Intents and Intent Filters. Retrieved from
https://developer.android.com/guide/components/intents-filters.

Android Runtime (ART) and Dalvik. (n.d.). Retrieved from
https://source.android.com/docs/core/runtime.

Bassolé, D., Koala, G., Traoré, Y., & Sié, O. (2020). Vulnerability Analysis in Mobile Banking and
Payment Applications on Android in African Countries. InterSol.

Bayern, M. (2019). 75% of developers worry about app security, but half lack dedicated
security experts on their team. Retrieved from
https://www.techrepublic.com/article/75-of-developers-worry-about-app-security-
but-half-lack-dedicated-security-experts-on-their-team/

Benitez-Mejia, D. G. N., Sanchez-Perez, G., & Toscano-Medina, L. K. (2016). Android
applications and security breach. In 2016 3rd International Conference on Digital
Information Processing, Data Mining, and Wireless Communications, DIPDMWC 2016
(pp. 164-169). Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/DIPDMWC.2016.7529383

Bertoglio, D. D., Girotto, G., & Neu, C. V. (2019). Pentest on an Internet mobile app: A case
study using Tramonto. arXiv. https://doi.org/10.48550/arXiv.1912.09779

Buzzard, J. (2022). 2022 Identity Fraud Study: The Virtual Battleground. Retrieved from
https://javelinstrategy.com/2022-Identity-fraud-scams-report.

Chanajitt, R., Viriyasitavat, W., & Choo, K.-K. R. (2016). Forensic analysis and security
assessment of Android m-banking apps. Retrieved from
https://gsec.hitb.org/materials/sg2016/COMMSEC%20D2%20-
%20Rajchada%20Chanajitt%20-
%20Forensic%20Analysis%20and%20Assessment%20of%20Android%20Banking%20Ap
ps.pdf

Dehling, T., Gao, F., Schneider, S., Sunyaev, A. (2015). Exploring the Far Side of Mobile Health:
Information Security and Privacy of Mobile Health Apps on iOS and Android. Retrieved
from https://mhealth.jmir.org/2015/1/e8/PDF.

Ericsson. (2022). Ericsson mobility report. Retrieved from
https://www.ericsson.com/49d3a0/assets/local/reports-papers/mobility-
report/documents/2022/ericsson-mobility-report-june-2022.pdf

https://doi.org/10.1088/1757-899X/846/1/012036
https://developer.android.com/guide/components/broadcasts
https://source.android.com/docs/core/runtime
https://www.techrepublic.com/article/75-of-developers-worry-about-app-security-but-half-lack-dedicated-security-experts-on-their-team/
https://www.techrepublic.com/article/75-of-developers-worry-about-app-security-but-half-lack-dedicated-security-experts-on-their-team/
https://doi.org/10.1109/DIPDMWC.2016.7529383
https://doi.org/10.48550/arXiv.1912.09779
https://javelinstrategy.com/2022-Identity-fraud-scams-report
https://gsec.hitb.org/materials/sg2016/COMMSEC%20D2%20-%20Rajchada%20Chanajitt%20-%20Forensic%20Analysis%20and%20Assessment%20of%20Android%20Banking%20Apps.pdf
https://gsec.hitb.org/materials/sg2016/COMMSEC%20D2%20-%20Rajchada%20Chanajitt%20-%20Forensic%20Analysis%20and%20Assessment%20of%20Android%20Banking%20Apps.pdf
https://gsec.hitb.org/materials/sg2016/COMMSEC%20D2%20-%20Rajchada%20Chanajitt%20-%20Forensic%20Analysis%20and%20Assessment%20of%20Android%20Banking%20Apps.pdf
https://gsec.hitb.org/materials/sg2016/COMMSEC%20D2%20-%20Rajchada%20Chanajitt%20-%20Forensic%20Analysis%20and%20Assessment%20of%20Android%20Banking%20Apps.pdf
https://mhealth.jmir.org/2015/1/e8/PDF
https://www.ericsson.com/49d3a0/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-june-2022.pdf
https://www.ericsson.com/49d3a0/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-june-2022.pdf

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2659

Filiol, E., & Irolla, P. (2015). (In)Security of mobile banking...and of other mobile apps.
Retrieved from https://www.blackhat.com/docs/asia-15/materials/asia-15-Filiol-
InSecurity-Of-Mobile-Banking-wp.pdf

Github. (n.d.-a). MobSF/Mobile-Security-Framework-MobSF. Retrieved from
https://github.com/MobSF/MobileSecurity-Framework-MobSF

Github. (n.d.-b). Allsafe. Retrieved from https://github.com/t0thkr1s/allsafe.
Google. (n.d.). Android Releases: Android Developers. Retrieved from

https://developer.android.com/about/versions/.
Hassan, M. A., Shukur, Z., & Mohd, M. (2022). A penetration testing on Malaysia popular e-

wallets and m-banking apps. International Journal of Advanced Computer Science and
Applications, 13, 10-15. https://doi.org/10.14569/IJACSA.2022.0130580

Hatamian, M., Wairimu, S., Momen, N., & Fritsch, L. (2021). A privacy and security analysis of
early-deployed COVID-19 contact tracing Android apps. Empirical Software Engineering
26, (36). https://doi.org/10.1007/s10664-020-09934-4

Homeland Security. (2017). Study on Mobile Device Security. Retrieved from
https://www.dhs.gov/sites/default/files/publications/DHS%20Study%20on%20Mobile
%20Device%20Security%20-%20April%202017-FINAL.pdf.
https://doi.org/10.1109/DIPDMWC.2016.7529383

Joseph, R. B., Zibran, M. F., & Eishita, F. Z. (2021). Choosing the weapon: A comparative study
of security analyzers for Android applications. In Proceedings of the 2021 IEEE/ACIS 19th
International Conference on Software Engineering Research, Management and
Applications (SERA) (pp. 1-6). IEEE. https://doi.org/10.1109/SERA51205.2021.9509271

Knorr, K., & Aspinall, D. (2015). Security testing for Android mHealth apps. In 2015 IEEE Eighth
International Conference on Software Testing, Verification and Validation Workshops
(ICSTW) (pp. 18-24). https://doi.org/10.1109/ICSTW.2015.7107459

Knorr, K., Aspinall, D., & Wolters, M. (2015). On the privacy, security and safety of blood
pressure and diabetes apps. In IFIP Advances in Information and Communication
Technology (Vol. 459, pp. 503-516). https://doi.org/10.1007/978-3-319-18467-8_38

Kohli, N., & Mohaghegh, M. (2020). Security testing of Android-based COVID tracer
applications. Retrieved from
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9411579

Krombholz, K., Hobel, H., Donko Huber, M., & Weippl, E. (2014). Advanced social engineering
attacks. Journal of Information Security and Applications, 19(2), 89-100.
https://doi.org/10.1016/j.jisa.2014.09.005

Kumar, M. S. (2020). Driving SSDLC by adopting Mobile Security Analysis using MobSF.
Retrieved from https://blogs.halodoc.io/ios-mobsf/.

Lee, A. (2018). A decade in, how safe are your iOS and Android apps? Retrieved from
https://www.nowsecure.com/blog/2018/07/11/a-decade-in-how-safe-are-your-ios-
and-android-apps/

Lewis, R. (2006). Security tips for temporary file usage in applications. Retrieved from
https://www.codeproject.com/Articles/15956/Security-Tips-forTemporary-File-Usage-
in-Applicat

Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D., Klein, J., & Traon, L.
(2017). Static analysis of Android apps: A systematic literature review. Information and
Software Technology, 88, 67-95. https://doi.org/10.1016/j.infsof.2017.04.001

https://www.blackhat.com/docs/asia-15/materials/asia-15-Filiol-InSecurity-Of-Mobile-Banking-wp.pdf
https://www.blackhat.com/docs/asia-15/materials/asia-15-Filiol-InSecurity-Of-Mobile-Banking-wp.pdf
https://github.com/MobSF/MobileSecurity-Framework-MobSF
https://github.com/t0thkr1s/allsafe
https://developer.android.com/about/versions/
https://doi.org/10.14569/IJACSA.2022.0130580
https://doi.org/10.1007/s10664-020-09934-4
https://www.dhs.gov/sites/default/files/publications/DHS%20Study%20on%20Mobile%20Device%20Security%20-%20April%202017-FINAL.pdf
https://www.dhs.gov/sites/default/files/publications/DHS%20Study%20on%20Mobile%20Device%20Security%20-%20April%202017-FINAL.pdf
https://doi.org/10.1109/DIPDMWC.2016.7529383
https://doi.org/10.1109/SERA51205.2021.9509271
https://doi.org/10.1109/ICSTW.2015.7107459
https://doi.org/10.1007/978-3-319-18467-8_38
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9411579
https://doi.org/10.1016/j.jisa.2014.09.005
https://blogs.halodoc.io/ios-mobsf/
https://www.nowsecure.com/blog/2018/07/11/a-decade-in-how-safe-are-your-ios-and-android-apps/
https://www.nowsecure.com/blog/2018/07/11/a-decade-in-how-safe-are-your-ios-and-android-apps/
https://www.codeproject.com/Articles/15956/Security-Tips-forTemporary-File-Usage-in-Applicat
https://www.codeproject.com/Articles/15956/Security-Tips-forTemporary-File-Usage-in-Applicat
https://doi.org/10.1016/j.infsof.2017.04.001

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2660

Lindström, H., & Marstorp, G. (2018). Security Testing of an OBD-II Connected IoT Device.
Retrieved from http://autosec.se/wp-content/uploads/2018/05/MarstorpLindstrom-
Security-Testing-of-an-OBD-II-Connected-IoT-Device.pdf.

Lockwood, A. (2012). Content providers and content resolvers. Retrieved from
https://www.androiddesignpatterns.com/2012/06/content-resolvers-and-content-
providers.html.

Maharjan, A. (2020). Ranking of Android apps based on security evidence. Retrieved from
https://scholarworks.iupui.edu/bitstream/handle/1805/24775/Thesis.pdf?sequence=
1&isAllowed=y

MITRE Corporation. (n.d.). Google Android: Vulnerability Statistics. Retrieved from
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224.

MobSF. (n.d.). Requirements. Retrieved from https://mobsf.github.io/docs/#/requirements.
Mokhtar, N. A. (2022). Hackers threaten to sell civil servants' personal data. The News Straits

Times. Retrieved from
https://www.nst.com.my/news/nation/2022/09/831916/hackers-threaten-sell-civil-
servants-personal-data

Mukherjee, L. (2020). OWASP Mobile Top 10 Vulnerabilities & Mitigation Strategies. Retrieved
from https://sectigostore.com/blog/owasp-mobile-top-10/.

New Straits Times. (2021). NST Leader: MyIdentity theft. Retrieved from
https://www.nst.com.my/opinion/leaders/2021/09/732095/nst-leader-
myidentitytheft.

Ng, B. (2021). Android Security Overview. Retrieved from
https://medium.com/@boshng95/android-security-overview-7386022ad55d.

Nguyen-Vu, L., Chau, N.-T., Kang, S., & Jung, S. (2017). Android rooting: An arms race between
evasion and detection. Security and Communication Networks.
https://doi.org/10.1155/2017/4121765

Nilsson, R. (2020). Penetration testing of Android applications (Dissertation). Retrieved from
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280290

OWASP. (2016a). OWASP Mobile Top 10. Retrieved from https://owasp.org/www-project-
mobile-top-10/.

OWASP. (2016b). M1: Improper Platform Usage. Retrieved from https://owasp.org/www-
project-mobile-top-10/2016-risks/m1-improper-platform-usage.

OWASP. (2016c). M4: Insecure Authentication. Retrieved from
https://owasp.org/wwwproject-mobile-top-10/2016-risks/m4-insecure-
authentication.

OWASP. (2016d). M5: Insufficient Cryptography. Retrieved from https://owasp.org/www-
project-mobile-top-10/2016-risks/m5-insufficient-cryptography.

OWASP. (2016e). M6: Insecure Authorization. Retrieved from

https://owasp.org/wwwproject-mobile-top-10/2016-risks/m6-insecure-authorization.
OWASP. (2016f). M7: Poor Code Quality. Retrieved from https://owasp.org/www-project-

mobile-top-10/2016-risks/m7-client-code-quality.
OWASP. (2016g). M9: Reverse Engineering. Retrieved from https://owasp.org/wwwproject-

mobile-top-10/2016-risks/m9-reverse-engineering.
OWASP. (2022). OWASP Mobile Application Security Testing Guide (MASTG) v1.5.0. Retrieved

from https://github.com/OWASP/owasp-
mastg/releases/latest/download/OWASP_MASTG-v1.5.0.pdf.

https://scholarworks.iupui.edu/bitstream/handle/1805/24775/Thesis.pdf?sequence=1&isAllowed=y
https://scholarworks.iupui.edu/bitstream/handle/1805/24775/Thesis.pdf?sequence=1&isAllowed=y
https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://mobsf.github.io/docs/#/requirements
https://www.nst.com.my/news/nation/2022/09/831916/hackers-threaten-sell-civil-servants-personal-data
https://www.nst.com.my/news/nation/2022/09/831916/hackers-threaten-sell-civil-servants-personal-data
https://sectigostore.com/blog/owasp-mobile-top-10/
https://www.nst.com.my/opinion/leaders/2021/09/732095/nst-leader-myidentitytheft
https://www.nst.com.my/opinion/leaders/2021/09/732095/nst-leader-myidentitytheft
https://medium.com/@boshng95/android-security-overview-7386022ad55d
https://doi.org/10.1155/2017/4121765
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280290
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-top-10/2016-risks/m1-improper-platform-usage
https://owasp.org/www-project-mobile-top-10/2016-risks/m1-improper-platform-usage
https://owasp.org/www-project-mobile-top-10/2016-risks/m5-insufficient-cryptography
https://owasp.org/www-project-mobile-top-10/2016-risks/m5-insufficient-cryptography

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2661

OWASP. (n.d.-b). SQL Injection Prevention Cheat Sheet. Retrieved from
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sh
eet.htm

Papageorgiou, A., Strigkos, M., Politou, E., Alepis, E., Solanas, A., Patsakis, C. (2018). Security
and privacy analysis of mobile health applications: the alarming state of practice.
Retrieved from
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272037.

PewResearch.Org. (2021). Mobile Fact Sheet. Retrieved from
https://www.pewresearch.org/internet/fact-sheet/mobile/.

Piątek, K. (2022). Hard-coded Tokens, Keys and Credentials in Mobile Apps. Retrieved from
https://www.netguru.com/blog/hardcoded-keys-storage-mobile-app.

Positive Technologies. (2019). Vulnerabilities and threats in mobile applications, 2019.
Retrieved from https://www.ptsecurity.com/ww-en/analytics/mobile-
applicationsecurity-threats-and-vulnerabilities-2019/

Reaves, B., Bowers, J., Scaife, N., Bates, A., Bhartiya, A., Traynor, P., & Butler, K. R. (2017).
Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Banking Applications in the
Developing World. Retrieved from https://www.cise.ufl.edu/~traynor/papers/reaves-
usenix15a.pdf.

Reed, B. (2022). Test of 250 Popular Android Mobile Apps Reveals that 70% Leak Sensitive
Personal Data. Retrieved from https://www.nowsecure.com/blog/2019/06/06/test-of-
250-popular-android-mobile-apps-reveal-that70-leak-sensitive-personal-data/.

Ruth, C. (2021). Over 60% of Android apps have security vulnerabilities. Retrieved from
https://atlasvpn.com/blog/over-60-of-android-apps-have-security-vulnerabilities.

Sai, A., Buckley Lero, J., & Le Gear, A. (2019). Privacy and security analysis of cryptocurrency
mobile applications. In Proceedings of the 2019 Fifth Conference on Mobile and Secure
Services (MobiSecServ) (pp. 1-6).

Security Tips. (n.d.). Android Developers. Retrieved from
https://developer.android.com/training/articles/security-tips#WebView.

Sharma, T., & Bashir, M. (2020). An analysis of phishing emails and how the human
vulnerabilities are exploited. In Proceedings of the 11th International Conference on
Applied Human Factors and Ergonomics (AHFE 2020), San Diego, CA.

Skylot. (2019). Retrieved from https://github.com/skylot/jadx.
Statista. (2019). Share of global smartphone shipments by operating systems from 2014 to

2023. Retrieved from https://www.statista.com/statistics/272307/market-
shareforecast-for-smartphone-operating-systems/

Statista. (2022a). Mobile operating systems' market share worldwide from January 2012 to
August 2022. Retrieved from https://www.statista.com/statistics/272698/global-
market-share-held-by-mobile-operating-systems-since-2009/.

Statista. (2022b). Number of available applications in the Google Play Store from December

2009 to March 2022. Retrieved from
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-
google-play-store/.

Stevens, M., Bursztein, E., Karpman, P., Albertini, A., & Markov, Y. (2017). The first collision
for full SHA-1. In J. Katz & H. Shacham (Eds.), Advances in Cryptology – CRYPTO 2017
(Vol. 10401, pp. 1-22). Springer, Cham. https://doi.org/10.1007/978-3-319-63688-7_19

https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.netguru.com/blog/hardcoded-keys-storage-mobile-app
https://www.cise.ufl.edu/~traynor/papers/reaves-usenix15a.pdf
https://www.cise.ufl.edu/~traynor/papers/reaves-usenix15a.pdf
https://www.nowsecure.com/blog/2019/06/06/test-of-250-popular-android-mobile-apps-reveal-that70-leak-sensitive-personal-data/
https://www.nowsecure.com/blog/2019/06/06/test-of-250-popular-android-mobile-apps-reveal-that70-leak-sensitive-personal-data/
https://atlasvpn.com/blog/over-60-of-android-apps-have-security-vulnerabilities
https://developer.android.com/training/articles/security-tips#WebView
https://github.com/skylot/jadx
https://www.statista.com/statistics/272307/market-shareforecast-for-smartphone-operating-systems/
https://www.statista.com/statistics/272307/market-shareforecast-for-smartphone-operating-systems/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://doi.org/10.1007/978-3-319-63688-7_19

INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES
Vol. 1 4 , No. 10, 2024, E-ISSN: 2222-6990 © 2024

2662

Team Sesame. (2017). Padding Oracle Attacks. Retrieved from
https://tlseminar.github.io/padding-oracle/.

Vermeulen, R. (2019). Security evaluation of glucose monitoring applications for Android
smartphones. Retrieved from https://www.os3.nl/_media/2018-
2019/courses/rp1/p41_report.pdf.

Yang, W., Zhang, Y., Li, J., Liu, H., Wang, Q., Zhang, Y., & Gu, D. (2017). Show me the money!
Finding flawed implementations of third-party in-app payment in Android apps. In NDSS
Symposium 2017.

Ngui, Y. (2021). Malaysia’s Covid-19 App Reports ‘Malicious Script’ Misuse.

https://www.os3.nl/_media/2018-%202019/courses/rp1/p41_report.pdf
https://www.os3.nl/_media/2018-%202019/courses/rp1/p41_report.pdf

