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Abstract 
Spectral methods also known as the Method of Weighted Residuals (MWR) are commonly 
used in many fields such as Mathematics, Engineering, Physics and others. This method is 
global smooth functions, usually by high order polynomials which differ from the finite 
element and finite difference which are local smooth functions, usually by low order 
polynomials. The most popular spectral methods that are commonly used by researchers are 
Tau, Collocation and Galerkin methods. Since not all the differential equations can be solved 
analytically, therefore, the numerical solution of the Legendre Tau method is presented. In 
this study, the Legendre Tau method is proposed and the comparison with the Chebyshev Tau 
method has been presented. The objectives of this study are to approximate the second order 
Boundary Value Problem (BVP) using Spectral Tau method by using the Legendre polynomials 
as the basis function and to make a comparison between the Legendre Tau method with 
Chebyshev Tau method. The accuracy of the Legendre Tau method is also presented by 
calculating the absolute error. Besides, the efficiency of both methods was proposed in this 
study by calculating their CPU times. Previous literature shows that many researchers 
approximated differential equations using Chebyshev Tau method while the Legendre Tau 
method has never been used before. The numerical structures established in this study are in 
line with solutions attained with renowned and standard spectral methods. To validate the 
results and claim, several test problems were presented in this study. 
Keywords: Taumethod, Spectraltaumethod, Legendrepolynomials, Chebyshevpolynomials 
 
Introduction 
Many researchers studied various types of numerical techniques for solving the differential 
equations which are Spectral method, Chebyshev Tau method, Legendre Tau method and 
other since not all the differential equations cannot be solved analytically. Öztürk (2018) 
stated that the differential systems and differential equations are suitable tools to discover 
mathematical equations and mathematical modeling. According to Trefethen (1996) ordinary 
differential equations (ODE) are easy to solve and understand compared to partial differential 
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equations (PDE) while in the numerical methods for ODE, Runge-Kutta methods and linear 
multistep methods are the methods that are commonly used. 
 

Furthermore, the trigonometric polynomials such as Chebyshev polynomials, and 
Legendre polynomials are the trial functions that are recently used in spectral methods 
(Saldaña et al., 2006). The trial functions were used as the basis functions for a truncated 
series expansion of the solution. In many areas of mathematics, Chebyshev polynomials are 
very important especially in approximation theory (Kim, 2012). Khader et al (2015), said that 
Chebyshev polynomials are the polynomials that are usually used in numerical analysis and 
mathematical computations.  

 
However, the study conducted by Davari and Ahmadi (2013), which is using the 

approximation of Legendre polynomials to solve 2nd order linear partial differential equations 
produced better accuracy. They compared their method with the previous method such as 
quadratic spline collocation method and Sinc Galerkin method. Next, Jung, Liu et al (2014), 
also found that in their proposed method using Legendre polynomials is a good 
approximation to the exact solution. Many researchers employ Chebyshev polynomials and 
Legendre polynomials in their proposed method. For example, Liu (2009), using Legendre 
polynomials to develop Adomian decomposition method and the result is compared with 
Chebyshev polynomials. In addition to that, Hassan et al (2010), proposed ultraspherical tau 
method employing the series expansions of Chebyshev and Legendre polynomials.  

 
It can be concluded that there are numerous studies conducted about Spectral Tau 

method employing Legendre polynomials and Chebyshev polynomials. Indeed, many 
researchers used Chebyshev Tau method to approximate second order BVP as revealed by 
(Bashir et al., 2015) and (Gourgoulhon et al., 2002). Therefore, the numerical solutions of 
Legendre Tau method have been proposed in this study since the Legendre Tau method has 
not been presented by other researchers for approximating the second order Boundary Value 
Problem (BVP) with Dirichlet boundary conditions. The results then compare with the 
Chebyshev Tau method with using Chebyshev polynomials as basic functions.  
 
Families of Polynomials 
In this subtopic, the properties of Legendre polynomials and Chebyshev polynomials will be 
presented. These two polynomials are usual families of polynomials that are commonly used 
by researchers. 

 
Chebyshev Polynomials 

The Chebyshev polynomials 𝑇𝑟 are an orthogonal set with measure 𝑤 =
1

√1−𝑥2
 on [-1, 1]. The 

scalar product of the two 𝑇𝑟 is given by: 

 ∫
𝑇𝑟𝑇𝑠

√1 − 𝑥2
𝑑𝑥

1

−1

=
𝜋

2
(1 + 𝛿0𝑟)𝛿𝑟𝑠 (3.1) 

where 𝛿𝑟𝑠 is a Kronecker delta same as Legendre polynomials with  

 𝛿𝑟𝑠 = {
0 𝑖𝑓 𝑟 ≠ 𝑠

 
1 𝑖𝑓 𝑟 = 𝑠

 (3.2) 

The polynomials can be figured with 𝑇0 = 1, 𝑇1 = 𝑥 and the other depends on the recurrence 
relation which is: 
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 𝑇𝑟+1(𝑥) = 2𝑥𝑇𝑟(𝑥) − 𝑇𝑟−1(𝑥), (3.3) 

 Gourgoulhon et al. (2002) claimed that the collocation points are differing to Legendre 
polynomials since the points of Chebyshev polynomials which can simplify the computational 
task. Besides, the relation between coefficients 𝑎𝑟 of a function 𝑢 and the coefficients 𝑏𝑟 of 
𝐿𝑢, where 𝐿 is a linear operator and it is shown below: 
If 𝐿 is the multiplication by 𝑥 then: 

 𝑏𝑟 =
1

2
[(1 + 𝛿0𝑟−1)𝑎𝑟−1 + 𝑎𝑟+1]          (𝑟 ≥ 1)  (3.4) 

If 𝐿 is the derivation: 

 𝑏𝑟 =
2

(1 + 𝛿0𝑟)
∑ 𝑝𝑎𝑝

𝑁

𝑝=𝑟+1
𝑝+𝑟 𝑜𝑑𝑑

 (3.5) 

If 𝐿 is the second derivation: 

 𝑏𝑟 =
1

(1 + 𝛿0𝑟)
∑ 𝑝(𝑝2 − 𝑟2)𝑎𝑝

𝑁

𝑝=𝑟+1
𝑝+𝑟 𝑒𝑣𝑒𝑛

 (3.6) 

 
Legendre Polynomials 
The Legendre polynomials are denoted by 𝑃𝑟 establish orthogonal polynomials family on [-
1, 1] with 𝑤=1 as a measure. One of the advantages of Legendre polynomials is the measure 
is simple particularly from the analytical approach (Gourgoulhon et al., 2002). The scalar 
product of the two 𝑃𝑟 is given by: 

 ∫ 𝑃𝑟𝑃𝑠𝑑𝑥 =
2

2𝑛 + 1

1

−1

𝛿𝑟𝑠 (3.7) 

where 𝛿𝑟𝑠 is a Kronecker delta as given in (3.2) 
Given that 𝑃0 = 1 , 𝑃1 = 𝑥, and all the other 𝑃𝑟  can be obtained by using the recurrence 
relation as shown below: 

 (𝑟 + 1)𝑃𝑟+1(𝑥) = (2𝑟 + 1)𝑥𝑃𝑟(𝑥) − 𝑟𝑃𝑟−1(𝑥). (3.8) 

However, from the formula, it is shown that the collocation points position is not 
analytical and need to be computed numerically. Some linear operation in coefficient space 
can be derived. Consider a function 𝑢 given by its coefficients: 

 𝑢 = ∑ 𝑎𝑟

𝑁

𝑟=0

𝑃𝑟(𝑥) (3.9) 

and 𝐻 be a linear operator acting on 𝐻 so that 

 𝐻𝑢 = ∑ 𝑏𝑟

𝑁

𝑟=0

𝑃𝑟(𝑥) (3.10) 

For some cases, the relation between the 𝑎𝑟 and 𝑏𝑟 can be written explicitly.  
For example: 
If 𝐿 is the multiplication by 𝑥: 

 𝑏𝑟 =
𝑟

2𝑟−1
𝑎𝑟−1 +

𝑟+1

2𝑟+3
𝑎𝑟+1 (𝑟 ≥ 1) (3.11) 

If 𝐿 is the derivation: 
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 𝑏𝑟 = (2𝑟 + 1) ∑ 𝑎𝑟

𝑁

𝑝=𝑟+1
𝑝+𝑟 𝑜𝑑𝑑

 (3.12) 

If 𝐿 is the second derivation: 

 𝑏𝑟 = (𝑟 +
1

2
) ∑ [𝑟(𝑟 + 1) − 𝑟(𝑟 + 1)]𝑎𝑟

𝑁

𝑝=𝑟+2
𝑝+𝑟 𝑒𝑣𝑒𝑛

 (3.13) 

 
 
Introduction of the Test Problem 
The scheme development will apply Legendre polynomials and Chebyshev polynomials as 
stated from the previous subtopic and will be described more detail in this subtopic. The test 
problems chosen are second order BVP with Dirichlet boundary conditions with the given 
exact solution. Since many researchers only used Chebyshev Tau method to approximate 
second order BVP, therefore, all the three test problems chosen to approximate second order 
BVP using Legendre Tau method. 

 
Test Problem 1 
Consider the following second order BVP (Bashir et al., 2015) 

 𝑢′′(𝑥) − 4𝑢′(𝑥) + 4𝑢(𝑥) = 𝑒𝑥 −
4𝑒

1 + 𝑒2
,      𝑥 ∈ [−1, 1] (3.14) 

with Dirichlet boundary conditions 

 𝑢(−1) = 0, 𝑢(1) = 0  (3.15) 

 
The boundary value problem has the exact solution which is 

 𝑢(𝑥) = 𝑒𝑥 −
sinh(1)

sinh(2)
𝑒2𝑥 −

𝑒

1 + 𝑒2
 (3.16) 

 
Test Problem 2 
Consider the following second order BVP (Gheorghiu, 2007) 

 𝑢′′(𝑥) + 𝑢(𝑥) = 𝑥2 + 𝑥,      𝑥 ∈ [−1, 1]  (3.17) 

 
with boundary conditions 

 𝑢(−1) = 0, 𝑢(1) = 0 (3.18) 

 
 
The boundary value problem has the exact solution which is 

 𝑢(𝑥) = 𝑥2 + 𝑥 − 2 +
cos(𝑥)

cos(1)
−

sin(𝑥)

sin (1)
  (3.19) 

 
Test Problem 3 
Consider the following second order BVP (Dutykh, 2016) 

 𝑢′′(𝑥) + 𝑢′(𝑥) − 2𝑢(𝑥) = 2,      𝑥 ∈ [−1, 1] 
(3.20) 
 

with boundary conditions 

 𝑢(−1) = 0, 𝑢(1) = 0  (3.21) 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN ACCOUNTING, FINANCE & MANAGEMENT SCIENCES 
Vol. 1 4 , No. 4, 2024, E-ISSN: 2225-8329 © 2023 

48 

 
The boundary value problem has the exact solution which is 

 𝑢(𝑥) = 1 −
sinh(2)

sinh(3)
𝑒𝑥 −

sinh(1)

sinh(3)
𝑒−2𝑥 (3.22) 

 
The Implementation of Spectral Tau Method for Solving 2nd Order BVP By Using the Basis 
Function Legendre Polynomials 
Consider the following general differential equation: 

 𝑃(𝑥)𝑢′′ + 𝑄(𝑥)𝑢′ + 𝑅(𝑥)𝑢 = 𝑓(𝑥),      𝑥 ∈ [−1, 1]  (3.23) 

 𝑢(−1) = 𝛼,       𝑢(1) = 𝛽  (3.24) 

 
The linear operator on the l.h.s. of the equation (3.23) can also be written as follows: 

 𝐻 =
𝑑2

𝑑𝑥2 +
𝑑

𝑑𝑥
+ 𝐼𝑑  (3.25) 

 
By using the elementary linear operations as (3.25), the matrix representation of 𝐻 

can be constructed that will be useful in the implementation of the different solvers. 
Let 

 𝑢 = ∑ 𝑎𝑖𝑃𝑖

𝑁

𝑖=0

(𝑥) (3.26) 

 
Then  

 𝐻𝑢 = ∑ ∑ 𝐿𝑖𝑗𝑎𝑖

𝑁

𝑗=0

𝑁

𝑖=0

𝑃𝑖(𝑥) (3.27) 

 
The general matrices of derivative operators with respect to the Legendre basis as 
corresponds to (3.12) and (3.13) 

( ) ( )11
00

0

7

50500

030300

101010

++





























=

NN

dx

d















     (3.28) 
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( ) ( )11

2

2

00

00

99

063

900350000

042015000

210100300

++

































=

NN

dx

d

















    (3.29) 

 
Therefore, the matrix representation of 𝐻 was calculated according to (3.25) by substituting 
the (3.28) and (3.29). 
 

The test functions 𝜉𝑛are selected to be the same by way of the spectral functions of 
decomposition. The residual equations by using Legendre polynomial are then  

 (𝑃𝑟 , 𝐻𝑢 − 𝑓) = 0      ∀𝑟 ≤ 𝑁 (3.30) 

 
In other words, the equation can be written as by using the matrix 𝐻𝑖𝑗 which is: 

 ∑ 𝐻𝑟𝑗𝑎𝑗

𝑁

𝑖=0

= 𝑓      ∀𝑛 ≤ 𝑁 (3.31) 

 
To obtain the value of r.h.s. of test problems, the function 𝑓(𝑥) can be expanded as 

 𝑓(𝑥) = ∑ 𝑎𝑟𝑃𝑟(𝑥),

∞

𝑟=0

 (3.32) 

 
or in the matrix from  

 [𝑓(𝑥)] = 𝑃𝐹 (3.33) 

 
Then, the Legendre polynomials orthogonality implies that 

 𝑎𝑟 =
2𝑛 + 1

2
∫

𝑓(𝑥)𝑃𝑟(𝑥)

√1 − 𝑥2
𝑑𝑥

1

−1

, 𝑟 ≥ 1.  (3.34) 

 
This integral has been computed by using Maple 18 software as shown in Appendix E in order 
to obtain the values of r.h.s. which is: 

 𝐹 = [𝑓0 𝑓1 𝑓2 𝑓3 … 𝑓𝑟]𝑇   (3.35) 

 
In the Tau method, the boundary conditions are enforced as extra equations and can be 
written as: 

 𝑢(𝑥 = −1) = 0 ⇒ ∑(−1)𝑗𝑎𝑗 = 0

𝑁

𝑗=0

 (3.36) 
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 𝑢(𝑥 = +1) = 0 ⇒ ∑ 𝑎𝑗 = 0

𝑁

𝑗=0

 (3.37) 

 
To find an invertible system having 𝑎𝑟 as unknown, the last two residual equations are relaxed 
and substituted by two boundary conditions. The solution comes close to the exact solution 
if the function is regular. The matrix format of the equation is as follows: 
 

 



























−−−

111111

111111

210

1121110

0020100

NNNNN

N

N

HHHH

HHHH

HHHH









 



























r
a

a

a

a





2

1

0

= 



























r
f

f

f

f



3

1

0

   (3.38) 

 
The value of 𝑎0, 𝑎1, 𝑎2 … , 𝑎𝑟 will be obtained by solving the above matrix. Then, the numerical 
solution by using Legendre Tau method can be obtained as written: 

𝑢(𝑥) = 𝑎0𝑃0(𝑥) + 𝑎1𝑃1(𝑥) + 𝑎2𝑃2(𝑥) + 𝑎3𝑃3(𝑥) + 𝑎4𝑃4(𝑥) + ⋯ +𝑎𝑟𝑃𝑟(𝑥) (3.39) 

 
The first few Legendre polynomials are:   
𝑃0(𝑥) = 1,  
𝑃1(𝑥) = 𝑥, 

𝑃2(𝑥) =
1

2
(3𝑥2 − 1), 

𝑃3(𝑥) =
1

2
(5𝑥3 − 3𝑥),  

𝑃4(𝑥) =
1

8
(35𝑥4 − 30𝑥2 + 3), 

𝑃5(𝑥) =
1

8
(63𝑥5 − 70𝑥3 + 15𝑥),  

 
While the other polynomials can be constructed using the recursion relation as shown in 
(3.8). Therefore, the approximate solution of 𝑢(𝑥) can be written as 
 

𝑢𝐿(𝑥)= 𝑎0 + 𝑎1𝑥 + 𝑎2(
1

2
(3𝑥2 − 1)) + 𝑎3(

1

2
(5𝑥3 − 3𝑥)) + ⋯ +𝑎𝑟𝑃𝑟(𝑥) (3.40) 
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Table 4. 1  
The Accuracy of Test Problems between Chebyshev Tau method and Legendre Tau method 

 

𝑵 = 𝟒 𝑵 = 𝟖 

Chebyshev Tau 
Method 

Legendre Tau 
method 

Chebyshev Tau 
Method 

Legendre Tau 
method 

TEST 
PROBLEM 1  ✓  ✓   

TEST 
PROBLEM 2  ✓   ✓  

TEST 
PROBLEM 3  ✓   ✓  

 
Table 4.13 shows the comparison of the accuracy between the numerical solution and 

absolute error of test problems 1, 2 and 3 on using Chebyshev Tau method and Legendre Tau 
method with 𝑁 = 4 and 𝑁 = 8. As can be seen from the table, the Legendre Tau method has 
better accuracy for all the test problems for 𝑁 = 4 compared to the Chebyshev tau method. 
However, for  𝑁 = 8 , the Chebyshev Tau method has better accuracy compared to the 
Legendre Tau method for test problem 1. Whereas, for test problem 2 and test problem 3, 
the Legendre Tau method gives more accurate solutions compared to Chebyshev Tau method 
for 𝑁 = 8. However, it can be concluded that as the number of terms increases, the accuracy 
of Chebyshev Tau method and Legendre Tau method can be improved since the numerical 
solution becomes closer to the exact solution and the absolute error gives the smallest value.  

 
Furthermore, the numerical experiments can also be summarized that Legendre Tau 

method is high efficiency since the CPU times for Chebyshev Tau method are longer for 
both  𝑁  for the two test problems. This indicated that Legendre Tau method has better 
accuracy and efficiency compared to Chebyshev Tau method for certain functions. 

 
Conclusion 
The comparison of Chebyshev Tau method and Legendre Tau method has been made in terms 
of accuracy and efficiency. Since the problems were solved numerically using the spectral Tau 
method, the numerical results are then compared with the exact solutions. As can be 
summarized from all the test problems, the Legendre Tau method gives better accuracy 
rather than Chebyshev Tau method since the numerical solutions of Legendre Tau method 
are very close to the exact solution for both 𝑁 = 4  and 𝑁 = 8 . In addition to that, the 
absolute error of Legendre Tau method is also smaller than Chebyshev Tau method for 
both 𝑁. It is also observed that the accuracy of the results by using Legendre Tau method can 
be improved by increasing the number of terms. Besides, Legendre Tau method also shows 
high efficiency compared to the Chebyshev Tau method since the CPU times for the system 
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to execute is much lesser. This indicates that Legendre Tau method has better accuracy and 
efficiency compared to the Chebyshev Tau method for certain functions.  
 

The results also show that the solutions express the correct physical behaviour of the 
model equation between the exact solutions. For further analysis, the solutions still expressed 
the physical behaviour by using Legendre Tau method same as by Chebyshev Tau method. 
Therefore, from the analysis, it can be concluded that this method is consistent. Thus, 
Legendre Tau method is numerically stable as 𝑁 increases.    

 
This work makes substantial theoretical and contextual contributions to the 

understanding of spectral methods, especially regarding numerical solutions of differential 
equations. This study clarifies the benefits of the Legendre approach in terms of accuracy and 
processing economy by contrasting it with the Chebyshev Tau method. The results are 
consistent with other studies that emphasize the Legendre Tau method's stability and 
convergence qualities, which have been demonstrated to produce better approximations in 
a variety of applications, including parabolic partial differential equations (Saadatmandi & 
Dehghan, 2010). The study's findings add to the body of knowledge by offering factual proof 
for the Legendre Tau method's preference in situations requiring a high degree of precision.  

 
Additionally, the study supports the theoretical background of spectral methods by 

proving that the numerical results are highly dependent on the choice of polynomial basis. 
This comparative analysis not only supports the results of earlier research (Vyasarayani et al., 
2014; Lehotzky & Insperger, 2016) that suggests using Legendre polynomials instead of 
Chebyshev polynomials in certain situations, but it also creates new opportunities for 
investigating hybrid approaches that combine the best features of both approaches. Beyond 
theoretical debates, this work has applications since the Legendre Tau method's proven 
effectiveness can enhance computational procedures in a variety of scientific and engineering 
fields. As a result, this study provides a useful manual as well as contributing to the theoretical 
landscape of numerical approaches. 

 
Recommendation  
This study focuses on the comparison between Chebyshev Tau method and Legendre Tau 
method to solve second order BVP by exploiting the trial functions of Chebyshev polynomials 
and Legendre polynomials. As mentioned in the previous section, Chebyshev Tau method has 
been used in numerous research to solve the second order BVP but not for Legendre Tau 
method because this method is still lacking. So, the recommendation that can be made is the 
Legendre Tau method used to solve higher-order BVP. 
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