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Abstract 
A temporary structure known as falsework is crucial for supporting the weight of building 
materials, labor, and equipment during building construction projects. However, falsework 
also poses significant safety risks to both workers and the public. The collapse of falsework 
can lead to serious injuries, fatalities, and substantial financial losses. Therefore, it is 
imperative to identify safety risk factors associated with falsework to minimize accidents and 
ensure a secure working environment. This study, focused on territory of Seberang Perai 
Tengah, Penang, with utilizes Structural Equation Modeling (SEM) to ascertain safety risk 
factors related to falsework in Malaysian building construction projects. The aim of this 
research is to help stakeholders in term of reducing accidents and promoting a safe working 
environment for workers. The research combines a quantitative approach through a 
questionnaire survey and a case study project to achieve its goals. The data collection process 
involves distributing questionnaires to selected individuals with experience related to 
falsework. The targeted study area comprises skilled workers competent in handling 
falsework, including Architects, Quantity Surveyors, Project Managers, Falsework Specialists, 
Safety Officers, and Falsework Installers. Surveys were disseminated to a sample size of 119 
individuals, targeting companies located in Seberang Perai Tengah, Penang. Furthermore, the 
study incorporates a literature review to identify key variables related to stakeholders' 
behavior towards technology changes and safety performance, encompassing human, 
technical, management, and environmental factors. A conceptual framework is developed as 
the final product of this research, and hypotheses are formulated to establish relationships 
between these variables. Data collected through the survey is analyzed using SEM techniques 
to validate the hypotheses. Based on the developed framework, the main findings of research 
show the most contributing factors to the falsework failure are technical factors combined 
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with either management factors or environment factors. By referring to the developed 
framework, guidelines can be utilized by companies in the construction industry and 
government regulators to ensure that safety standards are met, thereby safeguarding 
workers from undue injury. This research is instrumental in enhancing the safety and well-
being of construction workers in Malaysia by understanding the relationship between safety 
risk factors associated with falsework and their causes. 
Keywords: Safety Risk Factors, Falsework, Partial Least Square, Structural Equation Modelling, 
Accident. 
 
Introduction 
Construction projects often need temporary structures to hold up the building or structure 
while it is being built. These temporary structures are called falsework, and they are very 
important for keeping the construction site stable and safe. But if falsework fails or falls, it 
can pose serious safety risks that could lead to serious injuries or even death (International 
Organization for Standardization, 2020). In infrastructure projects, figuring out the risks of 
falsework structures that could cause them to fail or fall is called "identification of falsework 
risk failure." This process involves evaluating the installation and the condition of the 
falsework, as well as the environmental conditions and site-specific factors that could affect 
the stability of the structure. This involves a thorough analysis of the falsework's failure factor 
and how it will affect the falsework structure's failure. For example, excessive loading on the 
falsework structure and poor installation of the falsework structural can both be harmful to 
the falsework structure. This evaluation should also consider any environmental factors, like 
wind loading, that could affect the stability of falsework structure. In addition to the risk 
assessment, the falsework structure needs to be checked and maintained regularly so that 
any signs of instability or possible failure can be found. This includes visually inspecting the 
structure, testing how much weight it can hold, and looking for signs of damage or wear. By 
figuring out how likely it is that falsework will fail in infrastructure projects, construction 
professionals can take steps to reduce the risks and keep workers and the public safe. 
According to the National Institute for Occupational Safety and Health (NIOSH), one of the 
most important parts of construction safety is to find and deal with falsework risks. NIOSH 
recommends that employers do regular inspections and risk assessments of all falsework 
structures to make sure they are safe and sound, and that workers get proper training on how 
to spot and report potential hazards (NIOSH, 2018).  
 
To prevent accidents, we need to know the causes and types of accidents in the working 
environment, such as technical factors, management factors, and environmental factors that 
lead to accidents. So, this research aims to identify the significant relationship between safety 
risk factors of falsework and types of accidents that occurred during a building construction 
project. 
 
Literature Review 
An accident can be defined as an unplanned, undesirable, unexpected, and uncontrolled 
event. An accident does not necessarily result in an injury. It can be in term of damage to 
equipment and materials and especially those that result in injuries receive the greatest 
attention (Hinze et al., 1997). In high-rise building construction project, accidents mostly 
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occur at temporary structures that the failure prone than the permanent structure because it 
is easily getting damaged due to frequent dismantle and reuse (Sofwan et al., 2016). It is 
extremely difficult to talk about construction safety management in the absence of an 
understanding of the causes of accidents. Before one can embark on effectively and efficiently 
improving safety on the project site, one must first understand the theory of accident 
causation and prevention. Theories of accident causation are used to predict and prevent 
accidents in construction project. The famous accidents causation models started from 
domino theory produced by Heinrich in 1930 and multiple causation theory developed by 
Petersen in 1971. 
 

Falsework means the temporary structure used to support a permanent structure, 
material, plant, equipment and people until the construction of the permanent structure has 
advanced to the stage where it is self-supporting. The utilization of temporary structures, such 
as falsework, is becoming more widespread to accommodate the growing complexity of 
infrastructure projects. Temporary structures are systems designed for brief durations of 
time, as in the case of staged performances, maintenance, or retrofitting. Other than that, A 
falsework is also temporary structure that is used to support building activities. If it is not 
planned and maintained correctly, it poses a considerable risk to the construction workers' 
safety. During infrastructure projects, it is essential to identify and mitigate any safety risks 
that are associated with falsework. This will ensure the safety of construction workers as well 
as the general public. As a result, the purpose of this literature review is to identify and 
evaluate the existing research on the safety risk factors associated with falsework in 
construction projects. 

 
Previous research from 2021 has found a number of safety risk concerns that are 

connected with falsework. Some of these risk factors include faulty design, inadequate 
inspections, and inadequate worker training. For instance, (Alshammari, 2021) discovered 
that insufficient inspections of falsework might lead to undetected corrosion or deterioration, 
which can raise the probability of failure in the structure. In a similar vein, discovered that 
faulty design of falsework can lead to structural failure, which in turn can result in personal 
injuries or even fatalities. Because workers may lack the necessary knowledge or skills to 
safely work with falsework, inadequate training of workers can also increase the risk of injury 
or fatality (Zhang et al., 2019). 

 
Although earlier research has pinpointed a few potential safety hazards associated 

with falsework, there is still a requirement for a more in-depth examination of the published 
research in this field. This gap in knowledge will hopefully be filled by this literature review, 
which will provide a comprehensive analysis of the published research on safety risk factors 
associated with the use of falsework in construction projects. The purpose of this evaluation 
is to provide a better knowledge of the safety hazards connected with falsework and to 
propose new pathways for future research and the improvement of safety in infrastructure 
projects. This will be accomplished by identifying and analyzing the research that has already 
been conducted. The findings of this literature review can, in the long run, be used to inform 
the establishment of best practices for the safe design and maintenance of falsework, hence 
enhancing the safety outcomes of construction projects. 
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Methodology 
The research instrument is a questionnaire. This method is chosen as it is one of the most 
widely used and accepted instruments for research purposes (Sekaran, 2006). The items from 
the existing literature and former researches were adopted and adjusted to construct the 
questionnaire items in order to make sure that all the important points are covered during 
measurement. The total number of 50 copies of questionnaire was distributes personally and 
others via google form. The sample size for this research was 255 companies in Penang. 
Quantitative method was used in this research as it is more structured than the qualitative 
method of data collection. Hence, the data was collected by using the questionnaire. As stated 
above, the method used in this research for data collection process was the questionnaire as 
it is found to be easier for the collection of data from the respondents. The answers to the 
questions were recorded by taking input from the respondents and without the need for an 
interview. In analyzing the data, SPSS software version 26.0 was used for respondents’ 
demographics such as nature of company, types of company, age of company, gender, 
position in the company, working experience and qualification. The data analysis adopted for 
both independent and dependent variables was Smart PLS version 3.3.7. Five- point Likert 
scale was adopted to measure the independent and dependent variables which range from 
(1) strongly disagree, (2) disagree, (3) moderately, (4) agree, to (5) strongly agree. 
 
Result and Discussion 
Demographic Respondents 
A total of 119 questionnaires were distributed via Google Form by forwarding the online 
form's link to respondents' emails or WhatsApp’s. The aim of the survey was to gather data 
on select construction projects in Penang, involving clients, consultants, contractors, and 
workers. The survey targeted consultants and contractors, including skilled workers that are 
competent in handling falsework such as Architect, Quantity Surveyor, Project Manager, 
Falsework Specialist, Safety Officer, and Falsework Installer. By including a diverse range of 
professionals, the survey aimed to capture insights from different perspectives within the 
construction industry. As shown in Table 1, respondents with work experience of 1-3 years, 
3-5 years, 5-10 years, and more than 10 years were approximately 39.7%, 44.4%, 15.9%, and 
5.3%, respectively. The highest respondents’ groups (44.4%) had 3-5 years of experience and 
more than 65% of respondents had more than 3 years’ experience. These results collectively 
indicate the high qualifications and experience level of the respondents. As such, some level 
of confidence in their input can be exercised. Most respondents were site supervisor (35.1%) 
followed by project manager (31.8%), project directors (19.9%), safety officer (11.9%), 
falsework specialist (7%) and others (7%). The respondents' academic credentials were 45.0%, 
41.7%, 13.2, and 6.94% for DIP, BS, MS degrees, secondary school, respectively. 
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Table 1 
Demographic Respondents 

Type Items Percentage (%) 

Gender Female 
Male 

45 
55 

Age 20 29 Years 
30- 39 Years 
40-49 Years 
>50 Years 

31.1 
54.3 
18.0 
2.6 

Qualification Unknown 
Secondary School 

Diploma 
Bachelor 
Master 

11.11 
6.94 

                      45.0 
41.7 
13.2 

Position Project Director 
Project Manager 

Safety officer 
Falsework Specialist 

Site Supervisor 
Others 

19.9 
31.8 
11.9 

7 
35.1 

7 
Working Experience (Years) 1 - 3 Years 

3 - 5 years 
5 - 10 Years 
> 10 Years 

39.7 
44.4 
15.9 
5.3 

Number of years in 
construction field 

1 - 3 Years 
3 - 5 years 

5 - 10 Years 
> 10 Years 

50.7 
25.0 
8.3 

16.0 
Major types of 

construction involved 
Bridges construction  
Commercial Building 

construction 
High Rise Building 

construction 
Hospital 

14.6 
23.6 
58.3 
3.5 

 
Developing a Framework Model 
Smart PLS 3.3.7 vision validated the model, and the Tenenhaus et al (2005), criteria were used 
to assess the model's overall quality. The framework model consists of three stages: a first-
stage measurement model test, a second-stage structural model test, and a third-stage 
quality test model.  
 
Stage 1: Measurement Model Test Result 
Figure 1 below show the result from measurement model test. The developed measures' 
convergent and discriminant validity assures both the reliability of the scales and the 
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distinction of various sub-factors tested separately inside the measurement model. To 
examine the measuring model's convergent and discriminant validity, scale reliability and 
construct sub-factors were evaluated. Henderson et al. (2012) conducted validity tests to 
demonstrate the measurement model's dependability, as well as assessments of convergent 

and discriminant validity. 
Figure 1. Measurement Model 
 

i. Loading Factor 
Acceptance of outer loadings in Smart-PLS and structural equation modelling is conditional 
on meeting particular requirements. To validate the signs, researchers often seek 
considerable and substantial outer loadings. Adequate outer loadings, generally more than a 
predefined threshold such as 0.7, indicate that the indicator accurately represents the 
underlying concept. These loadings demonstrate a strong link between observed variables 
and underlying components in the model. Verifying that exterior loadings satisfy established 
criteria is critical for proving the measurement model's reliability and validity in structural 
equation modelling. 
 
The Table 2 shows the result for outer loadings in the structural equation model was deemed 
acceptable based on the set criterion, which is normally 0.7 or higher. The loadings for 
indicators representing multiple latent constructs—Environment (EF), Management (MF), 
Technical (TF), and Accident (TA)—show consistently strong connections. All Environment 
indicators had loadings more than 0.7, ranging from 0.823 to 0.884, indicating strong 
connections to the latent construct. All loadings in the Management indicators surpass 0.7 
(range from 0.772 to 0.878), indicating substantial correlations. Similarly, the Technical and 
Accident indicators show loadings greater than 0.7, with values ranging from 0.823 to 0.908 
and 0.795 to 0.882, respectively. Overall, the consistently high loadings across all latent 
components show that the presented data supports the measurement model's reliability and 
validity. 
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Table 2 
Loading Factor 

 
Environment        Management         Technical               Accident 

 
  

EF 1 
 

0.823 
 EF 2 0.883 
 EF 3 0.88 
 EF 4 0.884 
 EF 5 0.869 
 EF 6 0.871 
 EF 7 0.848 
 MF 1                                           0.772 
 MF 2                                           0.868 
 MF 3                                           0.878 
 MF 4                                           0.856 
 MF 5                                           0.849 
 MF 6                                           0.838 
 MF 7                                           0.798 
 TF 1                                                       0.908 
 TF 2                                                        0.823 
 TF 3                                                        0.877 
 TF 4                                                        0.897 
 TA1                                                                                               0.795 
 TA2                                                                                               0.882 
 TA3                                                                                               0.829 
 TA4                                                                                               0.844 
 TA5                                                                                               0.806 

ii. Composite Reliability 
During this phase, the evaluation focuses on internal consistency reliability, with Jöreskog's 
(1971) composite reliability being often used. Increased values indicate a better level of 
reliability. Ratings of dependability between 0.60 and 0.70 are regarded as "acceptable in 
exploratory research," while ratings between 0.70 and 0.90 are rated "satisfactory to good." 
Values greater than 0.95 indicate the possibility of item duplication, which might have an 
influence on construct validity, as observed by Diamantopoulos et al (2012), and Drolet (2001). 
Furthermore, convergence validity assesses how well a group of variables measures a notion. 
 

iii. Convergent Validity 
Convergence validity evaluates the ability of a group of variables to measure a notion. All 
loadings greater than 0.5 were approved. According to Hari (2010), the Composite Reliability 
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(CR) assesses the group's ability to uncover latent components inside a model. The CR and 
Average Variance Extracted (AVE) details are shown. 

iv. Average Variance Extracted (AVE) 
Each experimental element had an AVE greater than 0.5, suggesting that the research 
constructs achieved convergent validity under the stated conditions. Ridwan et al. (2020) 
used Cronbach's alpha and composite reliability to analyze the measurement model's internal 
consistency. All variables in Table 3 exceeded the 0.5 criterion, with the "Effect of Delay" 
variable having the highest value at 0.572. According to Silaparasetti et al. (2017), composite 
reliability was crucial in determining construct reliability and internal consistency. The 
composite dependability of these three components is emphasized in build reliability 
assessments and internal stability estimates. Notably, all research constructs had a composite 
reliability greater than 0.70. 
 
Table 3  
Average Variance Extracted (AVE) 

 
v. Discriminant Validity 

Hulland (1999) defines discriminant validity as the extent to which a construct inside a model 
demonstrates variations unique from other constructs. It needs distinct distinctions between 
the sub-factors of each construct inside the model. Fornell (1981) claimed that diagonal 
elements in a matrix have greater relevance than columns and rows, and that this might be 
used to establish discriminant validity. The experimental evaluation of discriminant validity 
seeks to assess an idea's distinctiveness in the context of other structural model concepts. 
Fornell (1981) proposed a standard measure that compares each construct's Average 
Variance Extracted (AVE) to the squared inter-construct correlation, which represents shared 
variance with all other reflectively assessed structural model components. The shared 
variances are expected to be lower than the AVEs for each project. Recent study, however, 
calls this metric's efficacy in determining discriminant validity into question. 
 
 
 
 
 
 
 
 
 

  
 
Cronbach's alpha 

 
Composite 
reliability (rho’a) 

 
Composite 
reliability (rho’c) 

Average variance 
extracted 
(AVE) 

EF 0.944 0.946 0.954 0.75 

MF 0.929 0.935 0.943 0.702 

TF 0.899 0.907 0.93 0.768 
TA 0.888 0.89 0.918 0.692 
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Table 4 
Cross Loading 

                                EF    MF     TF  TA 

EF1 0.823 0.765 0.804 0.604 

EF2 0.883 0.818 0.848 0.692 
EF3 0.88 0.84 0.867 0.713 
EF4 0.884 0.883 0.883 0.69 
EF5 0.869 0.863 0.833 0.657 
EF6 0.871 0.873 0.88 0.648 
EF7 0.848 0.793 0.812 0.634 
MF1 0.772 0.818 0.808 0.601 
MF2 0.868 0.874 0.813 0.801 
MF3 0.878 0.879 0.872 0.687 
MF4 0.842 0.856 0.812 0.649 
MF5 0.785 0.849 0.807 0.61 
MF6 0.81 0.838 0.821 0.606 
MF7 0.701 0.798 0.746 0.607 
TF1 0.86 0.898 0.908 0.776 
TF2 0.834 0.789 0.823 0.614 
TF3 0.857 0.867 0.877 0.672 
TF4 0.883 0.879 0.897 0.713 
TA 1 0.652 0.669 0.669 0.795 
TA 2 0.626 0.63 0.641 0.882 
TA 3 0.665 0.683 0.701 0.829 
TA 4 0.662 0.682 0.686 0.844 
TA 5 0.574 0.589 0.601 0.806 

     
The result obtained from Table 4 shows for the Environmental Factor in the structural 
equation model is deemed good, with loading values ranging from 0.823 to 0.848. A 
comparison with other factors, such as the, Management Factor, Technical Factor, and 
Falsework Accident, shows that the Environmental Factor indicators have significantly higher 
values. This observation implies a strong link between the indicators and their latent construct, 
emphasizing the model's effective description and measurement of the Environmental Factor. 
The result also show the Management Factor is deemed satisfactory, with loading values 
ranging from 0.701 to 0.878. These values are much higher when compared to other 
components, indicating a significant and distinct link with the latent construct. The data's 
acceptance demonstrates the effectiveness of the chosen indicators in effectively expressing 
the Management Factor within the structural equation model. Similarly, the result also show 
the Technical Factor is accepted, with loading values ranging from 0.857 to 0.908. These 
values outperform those of other variables on a constant basis, demonstrating a strong and 
distinct link with the Technical Factor. The data's acceptance demonstrates the usefulness of 
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the selected indicators in accurately capturing the underlying notion within the model. Finally, 
the result is declared acceptable for the Falsework Accident Factor, with loading values 
ranging from 0.795 to 0.882. These values are much higher when compared to other 
components, indicating a strong and distinct link with the latent construct. The data's 
acceptance highlights the efficiency of the selected indicators in effectively capturing the 
Falsework Accident Factor within the structural equation model. Overall, these findings 
contribute to the measurement model's reliability and validity. 
 
Stage 2: Structure Model Test Result 
The Table 5 shows the data's acceptance is justified since it meets established hypothesis 
testing standards. In the context of statistical significance, where a p-value of less than 0.05 
is typically used, the stated P values of 0 in all comparisons closely correspond to this 
requirement. This emphasizes the high degree of statistical significance and provides strong 
evidence against the null hypothesis. Furthermore, the criteria for a T value greater than 1.96, 
equivalent to a two-tailed significance threshold of 0.05, is consistently satisfied throughout 
the numerous comparisons. The T statistics, which range from 6.948 to 16.635, far exceed 
this criterion, strengthening the data's acceptability. 
 
By meeting these criteria—achieving a p-value less than 0.05 and a T-value more than 1.96—
the data not only exhibits statistical significance but also emphasizes the size of the observed 
changes in averages relative to standard deviations. The consistency of these results across 
many conditions and comparisons adds to the findings' dependability and validity. As a result, 
the data is widely accepted, suggesting strong evidence that the factors investigated, 
particularly those connected to falsework and technical issues, have a considerable impact on 
the frequency of infrastructure building accidents. 
 

Furthermore, the Significance of Relationships investigation digs into the statistical 
significance of connections between variables inside the model. The structural model 
emphasizes the importance of the independent variable-dependent variable link. Hypothesis 
1: Technical considerations have a substantial effect on the sorts of infrastructure building 
that lead to falsework failure. Based on the findings, TA2 had the greatest factor loading of 
0.882 in influencing the types of infrastructure development associated with falsework failure. 
TA1 has the lowest effect of delay on infrastructure building activity, with a factor loading of 
0.794. 
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Figure 2. Structure Framework Model 
 
Table 5  
Hypothesis Testing 

 
Hypothesis Testing 
 

 Original 
sample 
(O) 

Sample 
mean 
(M) 

Standard 
deviation 
(STDEV) 

 
T statistics 
(|O/STDEV|) 

 
P 
values 

ENVIRONMENT FACTOR [ -> TECHNICAL 
FACTOR [ 

 
0.489 

 
0.484 

 
0.063 

 
7.731 

 
0 

MANAGEMENT FACTOR [ -> TECHNICAL 
FACTOR [ 

 
0.508 

 
0.513 

 
0.063 

 
8.068 

 
0 

TECHNICAL FACTOR [ -> Types of 
Infrastructure construction accident 
related with falsework. [ 

 
 
0.793 

 
 
0.79 

 
 
0.048 

 
 
16.635 

 
 
0 

 
Stage 3: Quality Model Test Result 
Smart PLS is a statistical approach within structural equation modelling (SEM) that is 
extensively used in social sciences and business research to analyze variable interactions. A 
quality model in the context of Smart PLS refers to the set of criteria and standards used to 
assess both the structural equation model and its outputs. This includes features such as 
dependability, which focuses on the consistency and stability of the measuring devices used 
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in the model. The precision with which the model captures the underlying theoretical ideas is 
addressed by validity. Model Fit measures how well the structural model matches the 
observed data, whereas Predictive Power measures the model's ability to predict outcomes 
or behaviors. 
 

i. R2 Explained Variance 
In the absence of collinearity problems, it is prudent to investigate the R2 value(s) of the 
intrinsic construct. R2 is a statistic used to evaluate the model's explanatory power, measuring 
the amount of variance explained by each endogenous component (Shmueli and Koppius, 
2011). According to Rigdon (2012), R2 also represents the model's in-sample predictive 
performance. The model's explanatory power improves as the R2 values grow. R2 values of 
0.75, 0.50, and 0.25 are classified as substantial, moderate, and weak, respectively (Henseler 
et al., 2009), with R2 values of 0.10 being adequate for stock return forecasts (Raithel et al., 
2012). Importantly, R2 should be interpreted within the context of the study framework and 
compared to other studies and models, since overfitting can falsely inflate R2 values. Sharma 
et al. (2023) warn against overfitting, pointing out that overly high R2 values may be caused 
by the advanced partial regression model fitting noise rather than properly reflecting the 
population. R2 values of 0.90 are regarded appropriate for physical processes. It is worth 
noting that overfit models can predict attitudes, perceptions, and intentions with identical R2 
values, highlighting the importance of this criterion in elucidating how an independent 
variable influences a dependent variable and establishing links between structural equation 
modelling measurement and structural components. 
 
Table 6 
Explained Variance, R2 

  
R2 

R2  
adjusted 

Technical Factor [ 0.977 0.977 

Types of Infrastructure construction accident related with falsework. [ 0.629 0.628 

 
The table 6 shows data's acceptability is assessed by comparing the R2 and modified R2 values 
for the "Types of Infrastructure Construction Accident Related with Falsework." The R2 value 
of 0.629 indicates that the model accounts for about 62.9% of the variance in the dependent 
variable. Meanwhile, the corrected R2, which accounts for the number of predictors, falls 
marginally to 0.628. When compared to the adjusted R2, the larger R2 value indicates that the 
model has a substantially greater explanatory potential. 
Moreover, comparing the R2 and modified R2 values for the technical factor. The value for 
both data is similar. 
 

ii. Predictive Relevance, Q2 
In the context of predictive relevance, especially Q2, the model's efficacy may be tested using 
two independent approaches: cross-validated redundancy and communality. The model is 
predictively significant and effectively rebuilt, as indicated by the Q2 values in Table, which all 
surpass zero. 
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Table 7 
Predictive Relevance, Q2 

  
Q²predict 

TF 1 0.675 
TF 2 0.778 
TF 3 0.786 
TF 4 0.758 
TA 1 0.438 
TA 2 0.388 
TA 3 0.453 
TA 4 0.452 
TA 5 0.332 

 
The Table 7 provided result includes Q²predict values for different factors, specifically "TF" 
(Technical Factor) and "TA" (Infrastructure Accident). These values indicate the predictive 
relevance of the models for each factor. 
For "TF," the Q²predict values are 0.675, 0.778, 0.786, and 0.758 across four instances. These 
values, all greater than zero, suggest positive predictive significance for each TF model. Higher 
Q²predict values generally indicate a stronger ability to predict outcomes consistently. 
For "TA," the Q²predict values range from 0.438 to 0.332 across five instances. While these 
values are positive, they are somewhat lower compared to the "TF" values. Nevertheless, 
positive Q²predict values indicate that the TA models have predictive importance and can 
consistently predict events. 
In summary, the data's acceptability is supported by positive Q²predict values for both "TF" 
and "TA," indicating predictive relevance and the ability of the models to consistently predict 
outcomes. The higher Q²predict values for "TF" suggest a relatively stronger predictive ability 
compared to the "TA" models. 
 

iii. PLS Predict 
Stone Geiser's criteria are useful in establishing the model's endogenous structure. Q grades 
are used to evaluate well-structured models, with values of 0.02, 0.15, and 0.25 indicating 
low, moderate, and good prediction, respectively. The majority of Q values for each 
dependent variable exceed 0.25, indicating that the structural model is both acceptable and 
predictive. The predictive power of independent variables is emphasized in the evaluation of 
relevant predictions, with PLS predicting Q scores for exact suggestions. Route coefficients 
must be statistically significant and advantageous after the model explains and predictions to 
ensure their relevance and utility. These coefficients, which serve as formative indicator 
weights, are evaluated via bootstrapping and range from -1 to +1. Understanding the 
influence of intervening constructs on a target construct is critical, especially in the context of 
moderation, which necessitates understanding the sort of impact. According to Shmueli et al., 
(2019), PLS prediction entails separating training samples from holdout data to estimate 
model parameters and assess the model's ability to predict future events. The paper 
investigates the Root Mean Squared Error (RMSE) benchmark in PLS- SEM and the linear 
regression model. When all indicators have higher RMSE (or MAE) values than the naive LM 
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benchmark, PLS-SEM analysis becomes inaccurate. The model's strong predictability is 
validated when no PLS-SEM indicators have RMSE (or MAE) values greater than the naive LM's 
benchmark value. Table 8 shows that there are significant differences between RMSE(PLS) 
and RMSE(LM), indicating that the structural model has predictive power. Negative values are 
required for predictability. Notably, the PLS-RMSE SEM outperforms the naïve LM when many 
indicators have RMSE values greater than the benchmark value. Figure depicts the important 
factors between the delay factor and the effect of delay on infrastructure development works, 
with the management factor and the resource allocation factor recognized as relevant 
variables. 
 
Table 8  
PLS Predict 

  
PLS- SEM_RMSE 

 
LM_RMSE 

 
Differences 

TF 1 0.541 0.352 -0.189 

TF 2 0.447 0.316 -0.131 
TF 3 0.437 0.466 0.029 
TF 4 0.46 0.414 -0.046 
TA 1 0.708 0.706 -0.002 
TA 2 0.805 0.795 -0.01 
TA 3 0.736 0.812 0.076 
TA 4 0.775 0.763 -0.012 
TA 5 0.816 0.839 0.023 

 
The data presented here shows the Root Mean Square Error (RMSE) values for frameworks, 
PLS-SEM and LM, spanning tasks labelled TF and TA. The "Differences" column shows the 
variation in the RMSE values of PLS-SEM and LM. PLS-SEM has a much lower RMSE than LM, 
indicating higher performance. The quality of the framework is medium predictive power, 
since the data gathered show more negative values than positive values. 
 
Conclusion 
This study focuses on investigating the significant differences between the types of factors 
contributing to falsework failure and the types of falsework failure accidents at building 
construction sites. The results show that the technical factor, combined with either the 
environmental factor or the management factor, contributes to the type of falsework failure 
accident during construction projects. Also, information on the possible cause of a falsework 
accident during the building construction in Seberang Perai Tengah Penang has been revealed. 
This model will be able to help construction management plan to avoid fatal accidents during 
construction. 
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