
3509 

Application of AO-GARCH-MIDAS Model Based 
on Volatility Effect in Stock Market Volatility 

Forecasting 
 

Ting Liua, Weichong Chooa*, Matemilola Bolaji Tundea, Han 
Xinpingb 

a School of Business and Economics, Universiti Putra Malaysia, Seri Kembangan, Malaysia, 
bSchool of Economics and Trade, Henan Finance University, Zhengzhou, China 

Email: wcchoo@upm.edu.my 
 

Abstract 
This paper investigates the performance of GARCH-MIDAS and AO-GARCH-MIDAS models in 
predicting stock market volatility based on considering the volatility effects of 
macroeconomic variables. The traditional GARCH-MIDAS model only considers the level 
effects of macroeconomic variables, while this paper, by introducing the volatility effects of 
macroeconomic variables, in particular, combines the realized volatility with macroeconomic 
variables (e.g., CPI, M2, UD). The results of the MCS test based on MAE and MSE show that 
the AO-GARCH-MIDAS family of models performs well in out-of-sample forecasting, especially 
the AO-GARCH-MIDAS-RV+UD model, which is the best performer under both assessment 
metrics and shows strong forecasting ability. In contrast, traditional GARCH-MIDAS models 
and combined models based on macroeconomic variables (e.g., GARCH-MIDAS-RV+UD and 
GARCH-MIDAS-UD) perform weakly in out-of-sample forecasts. Overall, this paper shows that 
the AO-GARCH-MIDAS model, which takes into account the volatility effects of 
macroeconomic variables, significantly improves forecasting accuracy when dealing with 
complex economic environments and abnormal volatility, providing more reliable stock 
market volatility forecasting results. 
Keywords: Volatility, Stock Market, GARCH-MIDAS, Additive Outlier 
 
Introduction 
Stock markets not only provide investors with diverse savings and investment opportunities 
but also play a key role in reallocating funds across multiple sectors of the economy (Ahmad 
& Ramzan, 2016). Stock prices are the most direct reflection of the stock market and hold 
great importance for policymakers and economists, as future stock prices can indicate 
changes in long-term economic activity. However, stock prices only represent the amount 
investors are willing to pay at the time of trading and combine company fundamentals with 
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market conditions. In contrast, stock volatility measures the magnitude of stock price 
movements and reflects the market's sensitivity to risk. Its primary application lies in assessing 
market risk and developing risk management strategies, enabling investors to better 
understand market uncertainty. Volatility, as an explicit measure of risk, remains a central 
focus for financial economists (Park, 2002). Therefore, accurate measurement and forecasting 
of future volatility is crucial. 
 
The level and volatility factors of the same macroeconomic variable have distinct impacts on 
the volatility of commodity futures markets (Mo et al., 2018). In comparison, the impact of 
volatility in macroeconomic variables is more significant than the impact of levels in both the 
Chinese and Indian markets, as confirmed. To test the impact of macroeconomic variables on 
long-run variance, Liu et al. (2020) introduce levels and variances of macro variables into the 
model. They similarly find that differences in macroeconomic variables (PPI and IP) have a 
greater impact on commodity futures market volatility, while level factors have a weaker 
impact. In contrast, Zhang et al. (2022), in examining the estimation of EPU on Treasury 
futures, show that the Economic policy uncertainty (EPU) level model contributes more than 
17% of total volatility in China and the United States. In the variance model, the contribution 
to the U.S. decreases, while the contribution to the total volatility of the Chinese sample is 
only 1.41%. From the combined model of the two, the contribution is the largest, at 44% and 
22%, respectively. This implies that the combination of the level and variance of EPU is an 
important source of volatility in Treasury futures. 
 
The findings of Asgharian et al. (2013) suggest that including a long-run variance component 
of macroeconomic information in the model enhances its forecasting ability. Engle et al. 
(2013) consider the ability of levels and variances in the long-run component for forecasting. 
These levels and variances are examined not only separately but also in combination within 
the GARCH-MIDAS model. According to the long-run forecasting results, the model with a 
level long-run component driven by inflation and increases in industrial production is 
comparable to other models for out-of-sample forecasting at quarterly frequencies, yet 
outperforms purely time-series conventional models at longer horizons. Similarly, Yu and 
Huang (2021) explore the impact of economic policy uncertainty on stock volatility by 
considering both the level factor and the variance factor of the variable. The results indicate 
that both the level and variance of the indicator provide valuable information for estimating 
stock volatility. Moreover, the GARCH-MIDAS model, which incorporates realized volatility 
along with these two factors, demonstrates strong predictive power for forecasting. 
 
Gong et al. (2022) examine the effects of the level and volatility of macroeconomic variables 
on oil price volatility by analyzing these two forms of the variables separately in the model. 
Within the sample, the level and volatility of macro variables, except for the exchange rate, 
show different effects on oil price volatility. Additionally, the study indicates that exchange 
rate volatility is most closely related to the volatility of international oil prices and 
demonstrates the best empirical performance. Wu et al. (2020) analyze the performance of 
low-frequency economic indicator levels and volatility factors in predicting the volatility of 
crude oil futures prices. In terms of overall estimation performance, the volatility effect model 
outperforms the level effect model in predictive performance. 
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Asset return series generally exhibit several key characteristics, particularly notable volatility 
clustering, and conditional heteroskedasticity, which are crucial for constructing return-based 
volatility forecasting models. Given its ability to effectively capture the complex dynamics of 
volatility persistence and clustering, the family of GARCH models serves as an indispensable 
tool for volatility modeling in financial markets. However, studies based on GARCH-MIDAS 
models often overlook the impact of additive outliers on volatility forecasting. Franses and 
Ghijsels (1999) highlight that the presence of additive outliers in a time series can have dual 
detrimental effects: first, it introduces bias in in-sample parameter estimation, compromising 
the reliability of the model fit. Second, it significantly reduces the accuracy of out-of-sample 
forecasts by distorting the underlying structure of the data, thereby impairing the model's 
ability to generalize. 
 
Building on the advantages of the GARCH-MIDAS model, the AO-GARCH-MIDAS model 
proposed by Liu et al. (2024) introduces the Additive Outlier (AO) model, which significantly 
enhances its ability to address abnormal fluctuations in macroeconomic data. By identifying 
and adjusting outliers, the model effectively mitigates the interference of abnormal 
fluctuations on volatility forecasts, improving both its robustness and forecasting accuracy. 
This advancement not only optimizes the ability to capture the relationship between 
macroeconomic variables and financial market volatility but also enhances the model's 
applicability and robustness in complex economic environments. However, the model 
primarily focuses on the impact of the level effects of macroeconomic variables on volatility 
forecasts and does not explore the role of volatility effects in depth. Given the important role 
that volatility effects play in modeling financial market dynamics—particularly in capturing 
the asymmetric and dynamic effects of volatility in macroeconomic variables on financial 
market risk—this study extends the AO-GARCH-MIDAS model to assess the dual mechanism 
of macroeconomic variables by incorporating volatility effects. This improvement aims to 
enhance the model's capacity to explain and predict changes in financial market volatility 
while providing a more accurate quantitative tool for risk management in complex economic 
environments. 
 
Methodology 
Ghysels et al. (2007) first propose the Mixed Data Sampling model (MIDAS), and Engle et al. 
(2013) use the MIDAS approach to relate macroeconomic variables to the long-run 
components of volatility. A GARCH-MIDAS model was constructed, which provides a new 
approach to revisit the relationship between stock market volatility and economic activity and 
volatility. 
 
Assuming 𝑟𝑖,𝑡 is the logarithmic rate of return on day i of month t, the return and volatility in 
this GARCH-MIDAS model are described as follows 

𝒓𝒊,𝒕 − 𝑬𝒊−𝟏,𝒕(𝒓𝒊,𝒕) = √𝝉𝒕𝒈𝒊,𝒕𝜺𝒊,𝒕, 𝑬𝒊−𝟏,𝒕(𝒓𝒊,𝒕) = 𝝁, ∀𝒊 = 𝟏, 𝟐 , ⋯ , 𝑵𝒕        Eq. 1 

𝜺𝒊,𝒕|𝝍𝒊−𝟏,𝒕~𝑵(𝟎, 𝟏), 𝝈𝒊,𝒕
𝟐 = 𝝉𝒊𝒈𝒊,𝒕                                 Eq. 2 

 

Where, 𝑁𝑡 is the number of days in month t, 𝐸𝑖−1,𝑡 is the conditional expectation and 𝜓𝑖,𝑡 is 

the information set of the i-1 day of the rate of return in month t. 𝜎𝑖,𝑡
2  is the conditional 

variance, 𝜀𝑖,𝑡  is the random disturbance term, assuming a standard normal distribution, 
assuming Eq. 1 also can be expressed as 
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𝑟𝑖,𝑡 = 𝜇 + √𝜏𝑡𝑔𝑖,𝑡𝜀𝑖,𝑡, ∀𝑖 = 1, 2, ⋯ , 𝑁𝑡                      Eq. 3 

 

The volatility in Eq. 3 in the expression is decomposed into two parts: short-term volatility 
𝑔𝑖,𝑡, long-term volatility 𝜏𝑡. Short-term volatility 𝑔𝑖,𝑡 satisfies the GARCH (1, 1) model: 

𝒈𝒊,𝒕 = (𝟏 − 𝜶 − 𝜷) + 𝜶
(𝒓𝒊−𝟏,𝒕−𝝁)𝟐

𝝉𝒕
+ 𝜷𝒈𝒊−𝟏,𝒕               Eq. 4 

 

Where 𝛼 > 0, 𝛽 > 0, 𝛼 − 𝛽 <1. In addition, when the long-term trend 𝜏𝑡 is affected by the 
realized volatility (RV). This model is called a GARCH-MIDAS-X model of the form. 

log (𝜏𝑡) = 𝑚 + 𝜃0
𝑙 ∑ 𝜑𝑘(𝜔1, 𝜔2)𝑘

𝑘=1 𝑋𝑡−𝑘
𝑙 + 𝜃1

𝑣 ∑ 𝜑𝑘(𝜔1, 𝜔2)𝑘
𝑘=1 𝑋𝑡−𝑘

𝑣      Eq. 5 

𝐥𝐨𝐠 (𝝉𝒕) = 𝒎 + 𝜽𝟎 ∑ 𝝋𝒌(𝝎𝟏, 𝝎𝟐)𝒌
𝒌=𝟏 𝑹𝑽𝒕−𝒌 + 𝜽𝟏

𝒍 ∑ 𝝋𝒌(𝝎𝟏, 𝝎𝟐)𝒌
𝒌=𝟏 𝑿𝒕−𝒌

𝒍 +

𝜽𝟐
𝒗 ∑ 𝝋𝒌(𝝎𝟏, 𝝎𝟐)𝒌

𝒌=𝟏 𝑿𝒕−𝒌
𝒗                                                    Eq. 6 

 

𝑅𝑉𝑡 is calculated from the monthly sum of squared daily returns, 𝑅𝑉𝑡 = ∑ 𝑟𝑖,𝑡
2𝑁𝑡

𝑖=1 ; K represents 

the maximum lag order of low-frequency variables selected by AIC and BIC information 
standards. 𝜑𝑘(𝜔1, 𝜔2) is the weighting scheme of the Beta lag structure (Engle et al., 2013) 
because it is more flexible and more commonly used to accommodate various lag structures 
(Ghysels et al., 2007), the polynomial shown below 

𝜑𝑘(𝜔1, 𝜔2) =
(𝜅 𝐾)𝜔1−1(1−𝜅 (𝐾+1⁄ ))𝜔2−1⁄

∑ (𝑗 𝐾⁄ )𝜔1−1(1−𝑗 𝐾⁄ )𝜔2−1𝐾
𝑗=1

                        Eq. 7 

 

Fix 𝜔1= 1 to ensure that the weight of the lag variable is in the form of attenuation. In other 
words, the closer the distance to the current period, the more significant the impact on the 
current period (Yaya et al., 2022). The coefficient determines the attenuation speed of the 
impact of low-frequency data on high-frequency data. Therefore, the polynomial can be 
simplified as 

𝜑𝑘(𝜔2) =
(1−𝜅 (𝐾+1)⁄ )𝜔2−1

∑ (1−𝑗 𝑘⁄ )𝜔2−1𝐾
𝑗=1

                                 Eq. 8 

 

There are two approaches to estimating the GARCH-MIDAS model: the first one is a fixed 
window, and the other one is a rolling window. The results of Angelidis et al. (2004) and 
Degiannakis et al. (2008) show that a rolling window can capture changes in market activity 
more effectively because it allows the parameters to be re-estimated. Not only that, in this 
paper, we choose the 5-step rolling forecast so that each day updates the model and forecasts 
the volatility for the coming days. 
 
In order to hybrid the additive outlier model and the GARCH-MIDAS model, the method 
introduced by Liu et al. (2024) is specified as follows 
𝑟𝑖,𝑡

2

𝜏𝑡
= 𝑔𝑖,𝑡 + 𝑧𝑖,𝑡                                      Eq. 9 

𝐸𝑡−1(𝑧𝑖,𝑡) = 0                                    Eq. 10 

Based on the above formula rewrite the Short-term volatility 𝑔𝑖,𝑡 as 
𝑟𝑖,𝑡

2

𝜏𝑡
− 𝑧𝑖,𝑡 = (1 − 𝛼 − 𝛽) + 𝛼

(𝑟𝑖−1,𝑡−𝜇)2

𝜏𝑡
+ 𝛽(

𝑟𝑖,𝑡
2

𝜏𝑡
− 𝑧𝑖−1,𝑡)       Eq. 11 
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This formula corresponds to the paper of Franses and Ghijsels (1999) on GARCH (1, 1) model 

for 𝑟𝑖,𝑡
2 . 

Let 𝑓𝑖,𝑡 =
𝑟𝑖,𝑡

2

𝜏𝑡
 

(1 − (𝛼 + 𝛽)𝐿)𝑓𝑖,𝑡 = (1 − 𝛽𝐿)𝑧𝑖,𝑡                Eq. 12 
 
From this equation, 𝜙(𝐿) and 𝜃(𝐿) can be determined as below 
𝜙(𝐿) = 1 − (𝛼 + 𝛽)𝐿                     Eq. 13 
𝜃(𝐿) = 1 − 𝛽𝐿                         Eq. 14 

According to the equation  𝑟𝑡
∗2 = 𝑧̂𝑡

∗ + ℎ̂𝑡 form Franses and Ghijsels (1999), the formula of 

 𝑟𝑖,𝑡
∗ 2

 can be constructed as follow 

𝑟𝑖,𝑡
∗2 = 𝜏𝑡(𝑧𝑖,𝑡

∗ + 𝑔𝑖,𝑡)     𝑡 = 𝜈                Eq. 15 

 
Hence, the AO-corrected returns can be constructed 
𝑟𝑖,𝑡

∗ = 𝑟𝑖,𝑡                𝑡 ≠ 𝜈              Eq. 16 

𝑟𝑖,𝑡
∗ = 𝑠𝑖𝑔𝑛(𝑟𝑖,𝑡). (𝑟𝑖,𝑡

∗ 2
)1 2⁄    𝑡 = 𝜈              Eq. 17 

 
This expression shows that although 𝑟𝑖,𝑡 is replaced, its sign is retained in 𝑟𝑖,𝑡

∗ , when 𝑡 = 𝜈. 

Based on Chen and Liu (1993) of AO-ARMA, the estimated residuals 𝜀𝑡̂ can be represented by 
𝜀𝑡̂ = π(𝐿)𝑦𝑡                           Eq. 18 
When 
𝑡 < 𝜈,             𝑥𝑡 = 0 
𝑡 = 𝜈,             𝑥𝑡 = 1 
𝑡 = 𝜈 + 𝑖(𝑖 > 0),    𝑥𝑡+𝑖 = −𝜋𝑖 
 
At time 𝑡 = 𝜈, the impact 𝜌 of AO can be estimated as 

𝜌̂(𝜈) =
∑ 𝑥𝑡𝜀̂𝑡

𝑛
𝑡=𝜈

∑ 𝑥𝑡
2𝑛

𝑡=𝜈
                                           Eq. 19 

 
To test the significance of AO model, Chang et al. (1988) propose to standardize 𝜌̂(𝜈). It 
requires an estimate of the variance of the residual process, this estimate should ideally not 
contain too much bias because of outliers. This study uses the method of Chen and Liu (1993) 
the so-called ‘omit one’ to estimate a robust error variance. Based on this approach, we can 
get a standardized statistic 

𝜈̂ =
𝜌̂(𝜈)

𝜎̂𝑎
√∑ 𝑥𝑡

2𝑛
𝑡=𝜈                                          Eq. 20 

 
The influence of AO is significant when 𝜈̂ exceeds the value C. As Franses and Ghijsels (1999) 
mentioned, 𝜈̂  is asymptotically standard normal. As posited by Chen and Liu (1993), it is 
imperative to scrutinize the parameter C for values exceeding 3 when the dataset comprises 
more than 200 observations. Although other choices for C are viable, this study has identified 
superior outcomes when C equals 14. When the value of 𝜈̂ exceeds the value C, and 𝑡 = 𝜈, 
the observation 𝑦𝑡 shall be substituted with AO-corrected 𝑦𝑡

∗, derived from Eq. 19, and the 
additive outlier model 𝑦𝑡 = 𝑦𝑡

∗ + 𝜌𝐼𝑡(𝜈). 
 
In the dataset, to avoid the existence of multiple AOs, these steps need to repeat unless 𝜈̂ 
becomes insignificant. When there is no more additive outlier, the final step is to re-estimate 
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the model parameters based on all observations, where some of them have been corrected 
by using AO model. 
 
Data Description and Preliminary Analysis 
This study focuses on the Standard and Poor's 500 index of the U.S. stock market, with data 
covering the period from October 1, 2009, to March 31, 2023, comprising a total of 3,406 
trading days of daily closing prices obtained from Yahoo Finance (https://finance.yahoo.com). 
The selected macroeconomic variables include the monthly Consumer Price Index (CPI), and 
Money Supply (M2). The US Dollar (UD) Index is a representative variable for the foreign 
exchange market. To further analyze stock market volatility, the daily closing prices of the 
Standard and Poor's 500 index are converted into logarithmic returns, denoted as SP500, 
serving as a key measure of market volatility. 
 
 

Table 1 presents the descriptive statistics of stock returns and various macroeconomic 
variables. The results indicate that after calculating the logarithmic return on the daily closing 
price of the stock, the mean value is 0.0173, and the UD index is the lowest at only 0.0682. 
Additionally, the stock market return is negatively skewed and leptokurtic, with a kurtosis 
value exceeding three. This indicates that it does not conform to a normal distribution and is 
characterized by spikes and thick trailing tails, shifted to the left. The kurtosis value of UD is 
less than three, and the p-value exceeds 10%, suggesting no significant difference from a 
normal distribution, which implies that this indicator conforms to or is close to a normal 
distribution. The other macroeconomic variables deviate from a normal distribution and are 
shifted to the right. 
 
Table 1  
Descriptive Statistics and Stationary Testing.= 

 

M
e
a
n 

M
edi
an 

M
a
x 

M
i
n 

S
t
d
. 
D
e
v 

Ske
wne
ss 

Kurto
sis 

P
(
J
B
) 

SP5
00 

0.0173 0.0280 3.8949 -5.5439 0.4870 -0.7220 
15.87
70 

0.0000 

Macroeconomic data 

CPI 2.4833 1.9000 9.1000 -0.2000 2.0632 1.6236 
5.038
1 

0.0000 

M2 7.3846 6.1350 26.6400 -3.9200 5.4475 1.8315 
6.662
5 

0.0000 

UD 0.0682 0.0787 1.5751 -1.2026 0.5335 0.1675 
2.830
0 

0.6210 

 

Table 2 presents the results of the unit root test, Ljung-Box Q statistic, and ARCH test. The 
findings from all three stability tests confirm that the SP500 sequence is stable. Additionally, 
the results of the Ljung-Box Q statistic test for autocorrelation in the stock market return 
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series show that the p-values for the SP500 return series are all significant, indicating 
significant autocorrelation in the return series. Consequently, the original hypothesis of no 
autocorrelation is rejected. 
This result further indicates that the volatility of current returns is significantly influenced by 
prior period volatility, demonstrating strong time dependence in the return series. However, 
this autocorrelation can be effectively modeled and addressed using the GARCH model, which 
is well-suited for capturing the dynamic characteristics of market volatility. 
 
Table 2 
Heteroskedastic Test 

 ADF PP KPSS Ljung-Box Q-statistic (36) ARCH 

SP500 
-19.5543*** 
(0.0000) 

-66.3585*** 
(0.0001) 

0.0301 
306.2200*** 
(0.0000) 

882.6692*** 
(0.0000) 

Notes: ***Indicate rejections of the null hypothesis at the 1% significance level. The numbers 
in parentheses are the p-values of the tests. 
 
Empirical Results 
In-Sample Result 
The in-sample results of this study are presented in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. First, the estimated coefficients α and β for the total daily volatility of the short-term 
component (𝑔𝑖,𝑡 ) of stock returns are significant at the 1% level in all models, with both 
parameters corresponding to the ARCH and GARCH terms for short-term components, 
respectively. Second, both parameters are positive, and their sum is close to one, which 
implies a strong volatility persistence effect in these five stock markets. Additionally, ω1 and 
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ω2 are the beta polynomial weights of the long-run component of the model, which are 
important for most of the variables. When the results are significant, it indicates that the low-
frequency variables can predict long-run volatility. Finally, θ is the sum of the weighted rolling 
window realized volatility for each variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3 
In-Sample Parameter Estimation Results. 

 GARCH-
MIDAS-CPI 

GARCH-
MIDAS -
M2 

GARCH-
MIDAS-
UD 

GARCH-
MIDAS-
RV+CPI 

GARCH-
MIDAS - 
RV+M2 

GARCH-
MIDAS- 
RV+UD 

AO-
GARCH-
MIDAS-
CPI 

AO-
GARCH-
MIDAS -
M2 

AO-
GARCH-
MIDAS-
UD 

AO-
GARCH-
MIDAS-
RV+CPI 

AO-
GARCH-
MIDAS 
- 
RV+M2 

AO-
GARCH-
MIDAS- 
RV+UD 

𝜇 
0.0346*** 
(0.0059) 

0.0349*** 
(0.0060) 

0.0342*** 
(0.0060) 

0.0352*** 
(0.0059) 

0.0352*** 
(0.0059) 

0.0344*** 
(0.0060) 

0.0345*** 
(0.0060) 

0.0350*** 
(0.0061) 

0.0331*** 
(0.0061) 

0.0348*** 
(0.0059) 

 0.0337*** 
(0.0060) 

𝛼 0.2084*** 
(0.0299) 

0.1969*** 
(0.0317) 

0.2051*** 
(0.0283) 

0.2049*** 
(0.0279) 

0.2459*** 
(0.0355) 

0.2088*** 
(0.0291) 

0.2070*** 
(0.0303) 

0.1945*** 
(0.0329) 

0.1945*** 
(0.0286) 

0.2025*** 
(0.0288) 

 0.1898*** 
(0.0266) 

𝛽 0.7218*** 
(0.0315) 

0.7612*** 
(0.0270) 

0.7407*** 
(0.0297) 

0.7071*** 
(0.0316) 

0.6759*** 
(0.0396) 

0.7205*** 
(0.0333) 

0.7211*** 
(0.0327) 

0.7646*** 
(0.0305) 

0.7544*** 
(0.0303) 

0.7032*** 
(0.0337) 

 0.7372*** 
(0.0318) 

𝑚 -1.4362*** 
(0.2663) 

-
1.6206*** 
(0.4010) 

-
1.8925*** 
(0.2971) 

-
2.3041*** 
(0.3221) 

-
2.4663*** 
(0.4280) 

-
2.4571*** 
(0.3851) 

-
1.4558*** 
(0.2729) 

-
2.6092*** 
(0.4328) 

-
1.6984*** 
(0.2399) 

-
2.3903*** 
(0.3544) 

 -
2.6033*** 
(0.3397) 

𝜃𝑅𝑉 / / / 0.4285*** 
(0.1442) 

0.5618*** 
(0.1514) 

0.3933* 
(0.2254) 

/ / / 0.4640*** 
(0.1765) 

 0.4530** 
(0.2057) 

𝜃𝐶𝑃𝐼𝑙 -0.4113*** 
(0.1450) 

/ / -0.3321** 
(0.1305) 

/ / -
0.4055*** 
(0.1561) 

/ / -0.3232** 
(0.1468) 

/ / 

𝜃𝐶𝑃𝐼𝑉 0.0683*** 
(0.0158) 

/ / 0.0528*** 
(0.0149) 

/ / 0.0667*** 
(0.0166) 

/ / 0.0510*** 
(0.0167) 

/ / 

𝜃𝑀2𝑙 / -0.0468* 
(0.0263) 

/ / -0.0700* 
(0.0424) 

/ / 0.1495*** 
(0.0414) 

/ /  / 

𝜃𝑀2𝑉 / 0.0057*** 
(0.0015) 

/ / 0.0046** 
(0.0019) 

/ / -0.0009* 
(0.0005) 

/ /  / 

𝜃𝑈𝐷𝑙 / / -
2.9942*** 
(1.0603) 

/ / -2.0009** 
(0.8185) 

/ / -
2.6310*** 
(0.9394) 

/  -1.7648** 
(0.7211) 
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𝜃𝑈𝐷𝑉 / / 1.8823** 
(0.7362) 

/ / 0.8721 
(0.7427) 

/ / 0.9749** 
(0.4716) 

/  0.6737 
(0.7033) 

𝜔𝑅𝑉 / / / 1.000 
(0.7360) 

1.3375 
(0.9592) 

4.2813*** 
(1.5960) 

/ / / 6.0684** 
(3.0482) 

 4.1986*** 
(1.4374) 

𝜔2
𝐶𝑃𝐼𝑙

 1.3074 
(3.4203) 

/ / 115.0159 
(0.0127) 

/ / 44.6143 
(43.9606) 

/ / 5.0889 
(22.6683) 

 / 

𝜔2
𝐶𝑃𝐼𝑣

 22.3309*** 
(7.9087) 

/ / 44.0093 
(0.3968) 

/ / 1.2462 
(1.7395) 

/ / 9.1228 
(7.5236) 

 / 

𝜔2
𝑀2𝑙

 / 1.0001** 
(0.4108) 

/ / 2.8756*** 
(0.6625) 

/ / 1.0001*** 
(0.2980) 

/ /  / 

𝜔2
𝑀2𝑣

 / 1.0464*** 
(0.2762) 

/ / 1.7783*** 
(0.4641) 

/ / 1.0001 
(0.6258) 

/ /  / 

𝜔2
𝑈𝐷𝑙

 / / 1.0000** 
(0.4942) 

/ / 1.0000** 
(0.4353) 

/ / 1.0000** 
(0.4383) 

/  1.0000** 
(0.4217) 

𝜔2
𝑈𝐷𝑣

 / / 4.0264*** 
(1.1896) 

/ / 1.8791*** 
(0.5559) 

/ / 1.0009 
(1.6745) 

/  2.3682*** 
(0.7334) 

LLF/AIC 2219.1630 2315.8310 2237.7510 2206.4740 2222.0390 2231.082 2194.8980 2188.9500 2226.3780 2190.1490  2193.5520 
LLF/BIC 2266.2060 2363.1240 2284.7940 2265.2790 2280.8430 2289.886 2241.9420 2235.9940 2273.4220 2248.9530  2252.3560 

Notes: Notes: Standard errors in parentheses. *Indicate rejections of the null hypothesis at 
the 10% significance level. **Indicate rejections of the null hypothesis at the 5% significance 
level. ***Indicate rejections of the null hypothesis at the 1% significance level. The numbers 
in parentheses are the p-values of the tests. 
 
Out-of-Sample Result 
Market participants are more interested in a model's ability to predict future stock volatility 
rather than just its in-sample performance (Ma et al., 2019; Wang et al., 2020; Yu & Huang, 
2021). Since most investors aim to uncover new investment opportunities from historical 
market information, models with higher efficiency are required to help mine this information 
effectively. Therefore, this section focuses on analyzing whether models with additive outliers 
can enhance predictive ability. All models in this study employ fixed-window forecasting. The 
stock return data is divided into two subgroups for forecasting: the in-sample group accounts 
for 80% of the total sample, while the out-of-sample group accounts for the remaining 20%, 
corresponding to 660 forecasting periods. 
Three loss functions are selected in this study to evaluate the predictive performance of the 
models: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Median Absolute 
Error (MedAE). RMSE, the square root of the mean of the squared prediction errors, penalizes 
large errors more severely due to the squared term magnifying differences. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝜎𝑡 − 𝜎̂𝑡|𝑛

𝑡=1 , 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝜎𝑡 − 𝜎̂𝑡)2𝑛

𝑡=1 , 

𝑀𝑒𝑑𝐴𝐸 = 𝑀𝑒𝑑𝑖𝑎𝑛|𝜎𝑡 − 𝜎̂𝑡|. 
 
The results in  
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Table 4 show the differences in forecasting accuracy between different models and different 
combinations of macro variables, the two smallest values are highlighted in bold. For example, 
with CPI as a macroeconomic variable alone, the GARCH-MIDAS-CPI model has an MAE of 
1.2490, an RMSE of 2.0532, and a MedAE of 0.6213, which exhibit weak forecasting accuracy. 
After adding volatility factors into the model, such as the GARCH-MIDAS-RV+CPI model, the 
prediction results deteriorate significantly, with an MAE of 1.6157 and a RMSE of 2.6225, 
suggesting that the volatility of the CPI variable poses a challenge to volatility prediction. 
 
Among the combinations of other macroeconomic variables, the GARCH-MIDAS-M2 and 
GARCH-MIDAS-UD models perform relatively well, with the GARCH-MIDAS-M2 having an 
MAE of 0.9718, a RMSE of 1.4084, and a MedAE of 0.6093, which makes the forecasting 
results relatively more accurate. The models after adding realized volatility (e.g., GARCH-
MIDAS-RV+M2 and GARCH-MIDAS-RV+UD) show more stable prediction accuracies, with 
GARCH-MIDAS-RV+UD having the lowest MAE of 0.8028, showing the positive effect of 
volatility on the prediction results. 
 
In contrast, the AO-GARCH-MIDAS family of models outperforms the traditional GARCH-
MIDAS model in most cases. For example, the AO-GARCH-MIDAS-RV+UD model has an MAE 
of 0.7759, an RMSE of 1.2076, and a MedAE of 0.4722, all of which are the lowest values 
among all the models, demonstrating strong predictive ability in dealing with the level and 
volatility of macroeconomic variables. 
 
Overall, the results in the table indicate that combining the level and volatility of 
macroeconomic variables can effectively improve the accuracy of stock market volatility 
prediction, especially the AO-GARCH-MIDAS series of models show a superior prediction 
performance after considering the volatility effect. 
 
 
 
 
 
 
 
 
 
Table 4  
Out-of-Sample Prediction Results 

Model MAE RMSE MedAE Mean value 

GARCH-MIDAS-CPI 1.2490 2.0532 0.6213 1.3078 
GARCH-MIDAS-M2 0.9718 1.4084 0.6093 0.9965 
GARCH-MIDAS-UD 0.8222 1.2982 0.4887 0.8697 
GARCH-MIDAS-RV+CPI 1.6157 2.6225 0.7697 1.6693 
GARCH-MIDAS-RV+M2 1.3026 1.9575 0.8179 1.3593 
GARCH-MIDAS-RV+UD 0.8028 1.2433 0.4959 0.8473 
AO-GARCH-MIDAS-CPI 1.0935 1.6619 0.6317 1.1290 
AO-GARCH-MIDAS-M2 0.8222 1.2693 0.4932 0.8616 
AO-GARCH-MIDAS-UD 0.7926 1.2532 0.4555 0.8338 
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AO-GARCH-MIDAS-RV+CPI 1.2648 1.9922 0.6645 1.3072 
AO-GARCH-MIDAS-RV+M2 1.1278 1.6356 0.6764 1.1466 
AO-GARCH-MIDAS-RV+UD 0.7759 1.2076 0.4722 0.8186 

According to the results of the MCS test based on MAE and MSE in  

Table 5 and  

 
Table 6, the AO-GARCH-MIDAS-RV+UD model performs well under both metrics, with a 
Tmax,M value of 1.0000 and Rank_M of 1 and 1, respectively, indicating that it has the 
strongest out-of-sample prediction accuracy. Secondly, the AO-GARCH-MIDAS-UD model 
ranks second under the MAE metric with a Tmax,M of 1.0000, showing good predictive ability. 
The GARCH-MIDAS-RV+UD model follows in second place under the MSE indicator with a 
Tmax,M of 1.0000, which also performs better. However, the GARCH-MIDAS-UD model 
performs poorly under both MAE and MSE metrics, with Tmax,M values of 0.2576 and 0.3504, 
and Rank_M is 5, showing its weak predictive ability. Overall, the AO-GARCH-MIDAS family of 
models, especially the AO-GARCH-MIDAS-RV+UD model, demonstrates significant 
advantages in dealing with out-of-sample forecasting, providing more accurate and reliable 
forecasting results, while the traditional GARCH-MIDAS family of models performs weakly, 
especially in models that consider macroeconomic variables. 
 
Table 5  
Results of MAE-based MCS Test 

Model Tmax,M Rank_M 

GARCH-MIDAS-CPI / / 
GARCH-MIDAS-M2 / / 
GARCH-MIDAS-UD 0.2576 5 
GARCH-MIDAS-RV+CPI / / 
GARCH-MIDAS-RV+M2 / / 
GARCH-MIDAS-RV+UD 0.9944 3 
AO-GARCH-MIDAS-CPI / / 
AO-GARCH-MIDAS-M2 0.8304 4 
AO-GARCH-MIDAS-UD 1.0000 2 
AO-GARCH-MIDAS-RV+CPI / / 
AO-GARCH-MIDAS-RV+M2 / / 
AO-GARCH-MIDAS-RV+UD 1.0000 1 

 
 

Table 6  
MSE-based MCS test results 

Model Tmax,M Rank_M 

GARCH-MIDAS-CPI / / 
GARCH-MIDAS-M2 / / 
GARCH-MIDAS-UD 0.3504 5 
GARCH-MIDAS-RV+CPI / / 
GARCH-MIDAS-RV+M2 / / 
GARCH-MIDAS-RV+UD 1.0000 2 
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AO-GARCH-MIDAS-CPI / / 
AO-GARCH-MIDAS-M2 0.9672 4 
AO-GARCH-MIDAS-UD 1.0000 3 
AO-GARCH-MIDAS-RV+CPI / / 
AO-GARCH-MIDAS-RV+M2 / / 
AO-GARCH-MIDAS-RV+UD 1.0000 1 

 
Conclusion 
This study explores the role of macroeconomic variables and realized volatility in forecasting 
stock market volatility by comparing the out-of-sample forecasting performance of a variety 
of GARCH-MIDAS and AO-GARCH-MIDAS-based models. The experimental results show that 
the AO-GARCH-MIDAS family of models significantly outperforms the traditional GARCH-
MIDAS model in terms of forecasting accuracy, especially when dealing with abnormal 
volatility and complex economic environments, exhibiting stronger forecasting capabilities. 
Under the two error measures, MAE and MSE, the AO-GARCH-MIDAS models perform well 
overall, with the AO-GARCH-MIDAS-RV+UD model performing the best under both evaluation 
metrics, achieving an MAE of 0.7759, an RMSE of 1.2076, a MedAE of 0.4722, and a mean 
value of 0.8186. This suggests that the AO-GARCH-MIDAS model is effective in improving 
forecasting accuracy when combining realized volatility and economic variables, especially 
after accounting for volatility effects. 
 
In contrast, traditional GARCH-MIDAS models and combined models based on 
macroeconomic variables (e.g., GARCH-MIDAS-RV+UD and GARCH-MIDAS-UD) are weaker in 
terms of forecasting accuracy, particularly under the MSE metric. 
 
The results show that the AO-GARCH-MIDAS model considering the volatility effect 
significantly outperforms the traditional GARCH-MIDAS model in terms of forecasting 
accuracy. This not only demonstrates the adaptability and reliability of the AO-GARCH-MIDAS 
model in complex economic environments and abnormal fluctuations but also reflects the key 
role of volatility effects in enhancing forecasting performance. Future research could explore 
the introduction of other potentially relevant macroeconomic variables, such as monetary 
policy indicators, consumer confidence indices, or global economic uncertainty indices, to 
further enhance the model's predictive power. Although the AO-GARCH-MIDAS model has 
demonstrated significant advantages, further research on optimization algorithms (e.g., 
hyper-parameter tuning or introduction of machine learning methods) can be conducted in 
the future to cope with more complex and variable market conditions. 
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