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Abstract:  
The analysis of capital markets efficiency has attracted a considerable number of studies in 
empirical finance, but conflicting and inconclusive outcomes have been generated. The aim of 
this paper is to find any evidence that the selected emergent capital markets (eight emergent 
European and BRIC markets, namely Hungary, Romania, Estonia, Czech Republic, Brazil, Russia, 
India and China) abide by a particular evolution pattern (long range dependence) or the random 
walk hypothesis. In view of attaining the goal of the paper, we employed a methodology based 
on the interdisciplinary approach to the subject matter under investigation and applied the 
deterministic chaos and fractal theory. In this paper, the Hurst exponent calculated by the 
rescaled-range analysis is our measure of long range dependence in the series. We use a 
“rolling sample” approach to evaluate the Hurst exponent. The results suggest that this fractal 
exponent may be useful in assessing the stage of stock market inefficiency. 
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Introduction 

 
According to the classical theory, phenomena in the fields of economics and finance are 

characterized by a kind of mechanism subject to accurate measurement, prediction and 
control. On the other hand, chaos is a deterministic system defined by complex behavior relying 
on apparently random interaction among elements. 

Chaos theory has been first mentioned in Henri Poincaré`s attempts of mathematical 
modeling of the instability of mechanical systems (in the 1880s). In 1898, the French 
mathematician, Jacques Hadamard, published a relevant study of the chaotic movement of a 
particle pointing out that the instability of all its trajectories is given by their exponential 
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deviation from one another, with a positive Lyapunov exponent2. Edward Lorenz, a 
meteorologist, was another scientist who experimented with chaos theory. In 1960, while he 
was working on a weather prediction problem, he noticed that even a slight change to the 
initial conditions is likely to change dramatically the long-term behavior of a system (this 
sensitive dependence on initial conditions is also known as the butterfly effect, a widely used 
concept in chaos theory). He introduced a homonymous concept – Lorentz attractor3 – where 
attractor refers to a set of points in the area of stages leading to the system trajectories, and 
the attracting pool defines a set of initial conditions leading where the trajectories converge to 
an attractor. Lorenz`s discovery highlighted that it is downright impossible to render an 
accurate long-term weather prediction, however it also enabled him to come across other 
issues later known as chaos theory; it mainly refers to the fact that complex systems seem to 
run through certain cycles of events (notwithstanding the difficulty of acknowledging a pattern 
in chaotic systems) although the events are rarely repetitive and identically rendered. 

We consider it appropriate to compare the financial market to a fractal since a price 
graph analysis over a given time span will show their similar structure. Just like the fractal, 
however, the financial market evinces a sensitive dependence to initial conditions which makes 
the dynamic market systems hard to predict. It is our opinion that although a system may 
evince short-term unpredictability, it may however become a long-term deterministic system. 

The theory and models regarding capital market operation have initially developed from 
the assumption that these represent efficient markets. Rational agents quickly assimilate any 
kind of information that proves relevant to asset pricing and their output and subsequently 
adjusts the price in accordance with this information. By way of explanation, agents do not 
benefit from different comparative advantages in the process of information acquisition. To 
sum up, the efficient market hypothesis refers mainly to three fundamental and highly 
controversial concepts: efficient markets, random trajectories, rational agents. 

Non-linear dynamic systems have also triggered an interest in fractals which have come 
to be regarded as the geometry of chaos perceived as a non-linear and deterministic dynamic 
system enabling the emergence of random, unpredictable results. Mandelbrot was the first one 
to notice the potential use of Brownian motion in the study of motion in other fields, such as: 
price motion on financial markets. The author introduces the concept of fractal motion as a 
generalization of Brownian motion (Zerfus 1999). The new capital market theory combines 
fractals and other concepts from chaos theory with quantitative traditional methods in order to 
explain and predict market behavior. The fractal market theory (Fractal Market Hypothesis – 
FMH) (Peters 1994, 1996) is a rendering of efficient markets where the focus is placed on 
market stability however, instead of market efficiency. Thus, it takes into account the everyday 
market randomness as well as market anomalies.  

                                                           
2
 This exponent represents the rate of exponential divergence of two neighboring trajectories. The Lyapunov 

exponent indicates the extent of trajectory divergence considering the small observation errors, disturbances or 

differences. A chaotic system requires a positive Lyapunov coefficient. 

3
 It refers to the system presentation as a graph showing a given status that should be reached by the system, 

some kind of balance. 
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The paper is structured as follows. Section 2 presents the literature review on market 
efficiency, section 3 describes the methodology used in view of attaining the goal of this paper, 
the methods we used for the Hurst exponent estimation.  In section 4, we describe the data 
and section 5 covers the empirical results and discusses the implications whether the selected 
markets are subject to a specific evolution pattern or the random walk hypothesis. Section 6 
concludes. 

1. Literature review 
 
The literature on market efficiency is vast as the theme is of great interest for both 

practitioner and academics. Since it is a very intriguing issue, a big part of this literature focuses 
on seeking long memory dependence in asset returns. The analysis of long memory processes 
in capital markets has been one of the topics in finance, since the existence of the market 
memory could implicate the rejection of an efficient market hypothesis. Actually, if the stock 
returns present long range dependence, the random walk hypothesis is not valid anymore and 
neither does the market efficiency hypothesis. Cajueiro and Tabak (2004) tested for long-range 
dependence and efficiency in stock indices for 11 emergent markets along with US and Japan. 
They adopted a “rolling sample” approach and calculated median Hurst exponents to assess 
relative efficiency of these equity markets. They suggested that Asian equity markets show 
greater inefficiency than those of Latin America and developed markets rank first in terms of 
efficiency. 

Wang et al. (2011) gave a demonstrative research in Chinese stock markets by stable 
software. The results showed that the Chinese stock markets had obviously fractal 
characteristics and the fractal market hypothesis can deal with this problem very well, and not 
the efficient market hypothesis. 

Granero (2008) et al. (studied the existence of the market memory through Hurst 
exponent and the R/S analysis. In their paper they discussed the efficiency of this methodology 
as well as some of its more important modifications to detect the long memory. They also 
proposed the application of a classical geometrical method with slight changes and they 
compared both approaches. 

Mitra (2012) estimated Hurst exponent of twelve stock index series from across the 
globe using daily values of for ten years and found that the Hurst exponent value of the full 
series is around 0.50 confirming market efficiency. But the Hurst exponent value was found to 
vary widely when the full series was split into smaller series of 60 trading days. Later on, they 
tried to find a relationship between Hurst exponent value and profitable trading opportunity 
from these smaller series and found that periods displaying high Hurst exponent had potential 
to yield better trading profits from a moving average trading rule. 

Kale and Butar (2011) made a fractal analysis by conducting rescaled range (R/S) analysis 
of time series. Simulation study was run to study the distribution properties of the Hurst 
exponent using first-order autoregressive process.  

Carbone et al. (2004) calculated the Hurst exponent of time series by dynamical 
implementation of a scaling technique: the detrending moving average (DMA). They calculated 
the exponent Hurst for artificial series, simulating monofractal brownian paths, with assigned 
Hurst exponents. They next calculated the exponent H for the return of high-frequency series of 
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the German market. They found a much more pronounced time-variability in the local scaling 
exponent of financial series compared to the artificial ones. 

In their paper, Steeb and Andrieu (2005), considered nonlinear dynamical systems with 
chaotic and hyperchaotic behavior. They investigated the behavior of the Hurst exponent at the 
transition from chaos to hyperchaos. A two-dimensional coupled logistic map was studied. 

Although many methods have been proposed to deal with the determination of Hurst 
exponent, Cajueiro and Tabak (2004) stated that none of them are suitable for any time series 
and sometimes when applied to the same time series present conflicting results. In this context, 
in their paper they present a new method based on the rescaled variance statistics which can 
be used efficiently to this end. 

Matos et al. (2008) used a method of studying the Hurst exponent with time and scale 
dependency. This approach allowed them to recover the major events affecting worldwide 
markets and analyze the way those effects propagated through the different scales. The time-
scale dependence of the referred measures demonstrates the relevance of entropy measures in 
distinguishing the several characteristics of market indices: "effects" include early awareness, 
patterns of evolution as well as comparative behavior distinctions in emergent/established 
markets. 

 

2. Methodology 
 

2.1. The R/S fractal analysis method – rescaled range analysis 
 

This method, applicable to the study of financial markets, relies on the concept of the 
Hurst exponent. It was introduced by English hydrologist H.E. Hurst in 1951, based on Einstein’s 
contributions regarding Brownian motion of physical particles, to deal with the problem of 
reservoir control near Nile River Dam. Hurst (1965) proved that the dynamics of many natural 
phenomena is given by a randomly changed law. If the data series were perfectly random then 
these value series would increase simultaneously with the square-root of time enhancement 

(the  rule). Hurst introduced the non-dimensional ratio, dividing the data series to the 

standard deviation of observations to the average, in view of enabling comparison of data 
selected at different time moments. The result was a redimensioning of the scale hence the 
method is also called the R/S rescaled range analysis. R/S analysis in economy was introduced 
by Mandelbrot (1972), who argued that this methodology was superior to the autocorrelation, 
the variance analysis and to the spectral analysis. 

In this paper, the Hurst exponent calculated by the R/S analysis is our measure of long 
range dependence in the series. The R/S method (range / standard deviation) requires an initial 
dynamic series, standing for the evolution of a natural phenomenon or process.  

Let Pt be the price of a stock on a time t and rt be the logarithmic return denoted by the 
first difference of logarithmic values of daily prices: 

 
)log()log()log( 1 tttt PPPdr                                                                                                            

(1)
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As financial time series display high degree of non-stationarity, it is a common practice 

to work with first differenced series than with the original series. Therefore in the first step, we 
reduce non-stationarity by converting the original series to a returns series taking logarithm 
returns from successive values of the series. 

The R/S statistic is the range of partial sums of deviations of times series from its mean, 
rescaled by its standard deviation. The entire data series is divided into several contiguous sub-
periods each having n-observations and define each sub-period as Ia, a = 1, 2, …, k, so . 

For each sub-period, the average value of the sub-period is determined. Starting from this 
assumption, we may determine the following dimension (considering that the series is divided 
into a sub-periods of n range): 

 

 
 
where Xn,a  represents the cumulative deviation for each Ia sub-period; ri represents the i 
component of the dynamic series; rn,a represents the ri value average on every Ia sub-period.  

The range (R) of the cumulative trend adjusted return series for each sub-period Ia is 
measured by taking differences of maximum and minimum values of Xn,a: 
 

                                                                                                                 

(3) 
 
Hurst divided the R value to the standard deviation of initial observations for each Ia 

sub-interval, in view of comparing various dynamic series, for instance: 
 

 
 

For every Ia sub-interval, the ratio given below is further determined:  
 

 
 
As there are many contiguous sub-periods, the average R/S value of full series is 

calculated by averageing R/S values of all individual sub-periods: 
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The n length is increased and the procedure is repeated until n = (N-1)/2. 
 

Hurst noticed that this ratio increases as the number of observations in the initial data 
series enhances. If the data series were perfectly random, then the ratio would increase 

proportionally with the square root of the number of observations. Brownian motion is the 

primary model for a random walk process. Einstein (1908) found the distance a particle covers 
increases with respect to time according to the following relation: 

 
                                                                                                                                                                                 

(7) 
 
where R is the distance covered by the particle in time T (see Peters 1994, 1996). 

We can use equation (7) only if the time series we are considering is independent of 
increasing values of T. To take into account the fact that economic time series systems are not 
independent with respect to time, Hurst (1965) found a more general form of equation (7). In 
order to measure the R/S ratio enhancement in dependence on the phenomenon observation 
time, Hurst employed the following relation: 
 

                                                                                                                                    

(8) 
 

where c is a proportionality constant and H represents the Hurst exponent. 
Afterwards, the value of Hurst exponent (H) is established by means of regression: 
 

                                                                                                          

(9) 
 

2.2.  Hurst exponent: dynamically analysis 
 
Since market efficiency (predictability) seems to evolve over time (Cajueiro and Tabak 

2005), we measure this exponent dynamically. In this paper, we use a “rolling sample” 
approach to evaluate the Hurst exponent and to test for the existence of long-term linear 
dependence in the stock market volatility. In this framework, we adopt a rolling window of N = 
100 observations to compute the extent of inefficiency. The fixed sized window moves one 
observation at a time and so the calculation of H statistic at each period reveals the behavior of 
stock market efficiency over time. Since this approach makes available several Hurst exponents 
for each stock market and it is impossible to compare all of them, then we make statistical 
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inference with the means, medians and other statistical measures of these Hurst exponents in 
order to compare their market inefficiency degree. 

Hurst found that the rescaled range, R/S, for many records in time is very well described 
by the following empirical relation: 

 

 

 
Lo (1991) has revealed that the R/S statistic is sensitive to short-range dependence in 

financial time series. In order to avoid any short-range dependence in mean and in variance of 
the stock returns, we implemented the rolling R/S statistic on the adjusted time series. More 
precisely, the original daily returns are filtered in order to avoid any short-range dependence. In 
line with some previous studies including Cajueiro and Tabak (2004, 2005) and others, we 
employ the GARCH (1, 1) model in order to filter the stock return time series. Consequently, we 
implemented the R/S statistic on the standardized residuals. GARCH (1,1) residual can be used 
to eliminate or reduce linear reliance degree, i.e. autocorrelation. Because linear reliance will 
deviate from Hurst exponent H or easily lead to the first kind of error. By taking the GARCH 
(1,1)’s residual, we can reduce deviation degree and this may hopefully reduce insignificant 
degree of the results. This process is usually called the pre white noise treatment or trend 
expunction method. 

The model can be used successfully in volatile situations. GARCH model includes in its 
equation both terms and the phenomenon of heteroskedasticity. It is also useful if the series 
are not normally distributed, but rather they have "fat tails". No less important is that 
confidence intervals may vary over time and therefore more accurate intervals can be obtained 
by modeling the dispersion of residual returns (Opreana et all, 2012). 

GARCH (Generalized Autoregressive conditional heteroskedasticity) was proposed by T. 
Bollereslev in 1986 in the Journal of Econometrics. GARCH (1,1) model includes an equation for 
mean and one for dispersion, respectively:  

 

 
 

 
 
where: 
rt – dependent variable in the current period;  
xt – independent variable in the current period;  
ϒ – coefficient that shows the influence of the independent variable on the dependent variable;  
εt-1 – the residuals in the previous period = news about volatility from the previous period, 
measured as the lag of the squared residual from the mean equation. It is the "ARCH" term; 

σt-1
2 – variance of the dependent variable in the previous period = last period’s forecast 

variance. It is the “GARCH” term.  
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In this model and in our study, parameter restrictions are: 
- ensure positivity variance: ω, α, β > 0; 
- reversion to the mean if α + β < 1. Then the long run variance is ω / (1 – α – β); 
- estimation of the parameters by “maximum likelihood”.  

In the GARCH (1,1) model, described above, the α parameter shows that the residual 
terms of the previous period acts on dispersion and the β parameter shows that the dispersion 
of the previous period has influence on current dispersion. In fact, for very large series, GARCH 
(1,1) can be generalized to GARCH (p, q). 

 

3. Data 
 
The data of this survey represent daily stock market quotes of the most traded indices in 

the eight emergent capital market countries, four UE countries and the four BRIC countries (BET 
for Romania, OMX Tallin for Estonia, PX for the Czech Republic, BUX for Hungary, BOVESPA for 
Brazil, SENSEX for India, RTSI for Russia, and the Shanghai Composite Index for China). The 
indices are selected as they can best reflect and exhaustively capture all events on a market.  

In table 1 we present some market information for these stock markets. The Shanghai 
Stock Exchange, also the Bombay Stock Exchange and the Sao Paulo Stock Exchange have the 
market capitalization much higher than the others.  
 
Table 1. Market capitalization 

No. Symbol Index Country Values 

Market 
capitalization 

(US$ 
millions) 

1 BOVESPA The BM&F BOVESPA Stock 
Exchange 

Brazil 2476 1,227,000 

2 RTS The Russian Trading System 
Stock Exchange 

Russia 2493 816,928 

3 SENSEX The Bombay Stock Exchange India 2474 1,263,000 

4 SSE 
Composite 

The Shanghai Stock Exchange 
China 2512 2,547,000 

5 BET The Bucharest Stock 
Exchange 

Romania 2497 16,010 

6 PX 
The Prague Stock Exchange 

Czech 
Republic 

2514 37,340 

7 OMX Tallinn The Tallinn Stock Exchange Estonia 2744 1,966 
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8 BUX The Budapest Stock Exchange Hungary 2510 20,830 

 
Data has been mainly collected from stock exchange own websites, showing the indices 

transaction. We have collected daily values over a ten-year time span, between October 2002 – 
June 2013, in order to reach conclusions based on thorough and accurate data; the ten-year 
time span thus enabled a proper modeling of the phenomena occurring on the respective 
capital markets. The data sample consists of an average of 2500 daily values of each index price 
separately. 

  

4. Results 
 
The aim of the tests we are going to perform is to identify whether the selected markets 

are subject to a specific evolution pattern or the random walk hypothesis.  
 

4.1.  Tests for the hypothesis of independence of instantaneous returns of indices 
 

The Ljung Box test is used to determine the degree of serial correlation for the indices in 
this study and to compute the autocorrelation coefficients. The autocorrelation coefficients for 
12 lags and the partial correlation have been computed for level and first difference return 
series. As probabilities related to testing are inferior to the level of relevance, the correlation 
coefficients value being higher, the hypothesis of autocorrelation range to 12 lags is accepted 
for all stock indices. When autocorrelation coefficients (AC) are close to the value of 1 and 
slightly go lower, series strongly correlate and become stationary. The results of these tests (for 
the first difference) are showed below in table 2. 

 
Table 2. Autocorrelation and Q-Statistic for returns (values for the first difference) 

 Brazil (BOVESPA) Russia (RTSI) India (SENSEX) China (Shanghai_C_I) 

 AC Q-stat Prob AC Q-stat Prob AC Q-stat Prob AC Q-stat Prob 

1 
-
0.00
1 

0.004
2 

0.94
9 

0.11
8 

34.84
6 

0.00
0 

0.06
9 

11.81
9 

0.00
1 

-
0.00
1 

0.004
9 

0.94
4 

2 
-
0.03
8 

3.536
7 

0.17
1 

0.00
9 

35.06
5 

0.00
0 

-
0.04
4 

16.56
8 

0.00
0 

-
0.01
1 

0.305
5 

0.85
8 

3 
-
0.06
6 

14.28
3 

0.00
3 

-
0.04
2 

39.51
0 

0.00
0 

-
0.00
9 

16.76
8 

0.00
1 

0.04
6 

5.610
0 

0.13
2 
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4 
-
0.00
7 

14.40
7 

0.00
6 

0.02
3 

40.87
6 

0.00
0 

0.00
4 

16.80
0 

0.00
2 

0.04
6 

10.88
3 

0.02
8 

5 
-
0.01
0 

14.66
0 

0.01
2 

-
0.00
1 

40.88
1 

0.00
0 

-
0.03
3 

19.46
9 

0.00
2 

-
0.02
2 

12.10
6 

0.03
3 

6 
-
0.01
5 

15.20
9 

0.01
9 

0.00
9 

41.07
9 

0.00
0 

-
0.04
3 

24.06
4 

0.00
1 

-
0.03
7 

15.63
2 

0.01
6 

7 
-
0.03
6 

18.44
3 

0.01
0 

0.03
2 

43.63
2 

0.00
0 

0.01
3 

24.45
6 

0.00
1 

0.01
2 

16.00
1 

0.02
5 

8 
0.03
4 

21.37
2 

0.00
6 

-
0.07
3 

56.94
8 

0.00
0 

0.05
8 

32.90
8 

0.00
0 

-
0.01
8 

16.79
1 

0.03
2 

9 
-
0.00
8 

21.54
7 

0.01
0 

-
0.01
6 

57.60
2 

0.00
0 

0.02
8 

34.91
3 

0.00
0 

0.00
2 

16.79
8 

0.05
2 

1
0 

0.04
4 

26.31
4 

0.00
3 

-
0.00
8 

57.75
3 

0.00
0 

0.02
6 

36.59
5 

0.00
0 

0.03
2 

19.40
8 

0.03
5 

1
1 

-
0.01
2 

26.68
8 

0.00
5 

0.02
5 

59.38
2 

0.00
0 

-
0.02
0 

37.56
4 

0.00
0 

0.02
5 

21.01
3 

0.03
3 

1
2 

0.01
3 

27.08
9 

0.00
8 

0.02
4 

60.77
9 

0.00
0 

0.00
3 

37.57
9 

0.00
0 

0.02
2 

22.26
3 

0.03
5 

 

 
Romania (BET) Hungary (BUX) Estonia (OMX)  The Czech Republic 

(PX) 

 AC Q-stat Prob AC Q-stat Prob AC Q-stat Prob AC Q-stat Prob 

1 
0.08
9 

19.71
7 

0.00
0 

0.05
8 

8.599
1 

0.00
3 

0.15
2 

63.83
2 

0.00
0 

0.06
5 

10.78
2 

0.00
1 

2 -
0.00

19.71
8 

0.00
0 

-
0.07

22.83
5 

0.00
0 

0.05
9 

73.29
8 

0.00
0 

-
0.08

27.20
0 

0.00
0 
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0 5 1 

3 
0.01
1 

20.02
4 

0.00
0 

-
0.02
7 

24.64
7 

0.00
0 

0.06
7 

85.76
6 

0.00
0 

-
0.04
9 

33.14
9 

0.00
0 

4 
-
0.03
3 

22.75
0 

0.00
0 

0.06
8 

36.39
0 

0.00
0 

0.01
7 

86.55
4 

0.00
0 

0.03
3 

35.97
0 

0.00
0 

5 
0.00
8 

22.89
3 

0.00
0 

0.04
5 

41.50
7 

0.00
0 

0.05
7 

95.60
2 

0.00
0 

0.05
3 

43.13
3 

0.00
0 

6 
-
0.01
0 

23.12
3 

0.00
1 

-
0.03
8 

45.15
0 

0.00
0 

0.04
4 

100.9
7 

0.00
0 

-
0.01
5 

43.68
9 

0.00
0 

7 
0.03
5 

26.11
1 

0.00
0 

-
0.06
9 

57.20
4 

0.00
0 

0.01
9 

101.9
3 

0.00
0 

-
0.02
3 

45.05
6 

0.00
0 

8 
0.04
3 

30.83
0 

0.00
0 

0.01
2 

57.59
5 

0.00
0 

0.06
0 

111.9
1 

0.00
0 

0.00
3 

45.07
8 

0.00
0 

9 
0.01
2 

31.21
1 

0.00
0 

0.05
6 

65.50
1 

0.00
0 

0.07
2 

126.1
7 

0.00
0 

0.01
2 

45.44
4 

0.00
0 

1
0 

-
0.02
1 

32.35
6 

0.00
0 

0.00
3 

65.52
4 

0.00
0 

0.05
1 

133.2
4 

0.00
0 

0.03
3 

48.26
9 

0.00
0 

1
1 

0.06
4 

42.51
1 

0.00
0 

-
0.03
2 

68.04
2 

0.00
0 

0.04
3 

138.3
7 

0.00
0 

-
0.00
8 

48.42
7 

0.00
0 

1
2 

0.01
9 

43.42
4 

0.00
0 

-
0.02
4 

69.45
4 

0.00
0 

0.05
0 

145.3
2 

0.00
0 

0.01
9 

49.34
9 

0.00
0 

 
The results we found help us conclude that the first difference denotes stationary time 

series. Stationarity goes hand in hand with the inefficiency of these capital markets. The linear 
dependence of these returns is emphasized by significant values of autocorrelation coefficients 
for level (for example, the autocorrelation coefficient for BET at lag 1 was of 0.998). The Ljung 
Box test may determine linear dependence, the p values being lower than the critical value of 
0.05. Therefore the previous returns may be used to forecast future returns. This fact shows 
that the weak form of the analysed market efficiency does not exist. The p values in the table 2 
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show for the first difference that the null hypothesis is rejected for all markets. The capital 
market in China highlights a weak efficiency between lags 1 and 3 and at lag 9. The same thing 
goes for Brazil that indicates weak efficiency between lags 1 and 2.  

 

4.2.  Dynamically analysis of Hurst exponent 
 

In order to identify the existence of long-term linear dependence in the stock market 
volatility over time, the Hurst exponent is calculated, in the present paper, also by a rolling 
window of N = 100 observations to compute the extent of inefficiency. In order to avoid any 
short-range dependence in mean and in variance of the stock returns, we implemented the 
rolling R/S statistic on the adjusted time series. We employ the GARCH (1, 1) model in order to 
filter the stock return time series. Consequently, we implemented the R/S statistic on the 
standardized residuals.  

The graph of the temporal evolution of Hurst exponent, dynamically calculated as rolling 
window applied on GARCH(1,1); residuals are shown in figure 1. 

 
Figure 1. Temporal evolution of Hurst exponent - rolling window (n = 100) 
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These Hurst exponents are well above 0.5 and for most time series seem to be time 
varying. Since this approach makes available several Hurst exponents for each stock market and 
it is impossible to compare all of them, then we make statistical inference with the means, 
medians and other statistical measures of these Hurst exponents in order to compare their 
market inefficiency degree. In table 3 we present descriptive statistics for these Hurst 
exponents for each one of the eight indices.  
 
Table 3. Descriptive statistics for the rolling Hurst exponent 

 
BOVESP

A 
RTS SENSEX 

SHANGHAI_
C_I 

PX OMX BUX BET 

Mean 
0.76450

4 
0.7962

42 
0.8265

10 
0.784442 

0.8039
78 

0.8566
61 

0.7744
54 

0.8319
68 

Median 
0.75146

2 
0.7977

35 
0.8094

38 
0.783255 

0.7989
73 

0.8485
20 

0.7588
12 

0.8391
14 

Max. 
0.99946

5 
0.9999

90 
0.9999

00 
0.990748 

0.9999
90 

0.9999
90 

0.9999
90 

0.9999
90 

Min. 
0.53740

6 
0.5609

47 
0.6091

36 
0.598364 

0.5485
11 

0.5608
22 

0.5867
12 

0.5553
54 
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Std. 
Dev. 

0.09480
4 

0.1007
79 

0.0859
05 

0.081840 
0.1003

45 
0.0897

53 
0.0930

19 
0.1069

64 

Skewne
ss 

0.12338
8 

0.1837
99 

0.3562
55 

0.037734 
0.2674

03 

-
0.0513

8 

0.4960
84 

-
0.3096

9 

Kurtosis 
2.31061

5 
2.6865

52 
2.7790

16 
2.581860 

2.4941
81 

2.6347
56 

2.7089
11 

2.5412
43 

         

Jarque-
Bera 

53.0788
5 

23.104
41 

55.093
82 

17.87315 
53.645

21 
14.252

68 
105.84

39 
58.816

04 

Prob. 
0.00000

0 
0.0000

10 
0.0000

00 
0.000131 

0.0000
00 

0.0008
04 

0.0000
00 

0.0000
00 

         

Sum 
1816.46

1 
1891.8

70 
1963.7

87 
1863.834 

1910.2
52 

2035.4
26 

1840.1
04 

1976.7
56 

Sum Sq. 
Dev. 

21.3458
8 

24.121
26 

17.526
72 

15.90725 
23.914

15 
19.132

13 
20.549

98 
27.173

05 

         

Obs. 2376 2376 2376 2376 2376 2376 2376 2376 

 
From this table, we can see that the mean values of Hurst exponent are ranging from 

0.7645 (Brazil) to 0.8566 (Estonia) while the median value of Hurst exponent are ranging from 
0.7514 (Brazil) to 0.8485 (Estonia). As well, we can point out that the Hurst exponents are 
always above 0.5 indicating the presence of long-range dependence on stock market returns. In 
addition, all the indices daily returns exhibits a persistent behavior. Also, the highest standard 
deviation of the Hurst exponent is attributed to Romania’s market while the lowest standard 
deviation is a feature of China’s Hurst exponent. Furthermore, the skewness and the kurtosis 
statistics reveal that the Hurst exponents are not normally distributed.  

Kurtosis indicator shows that the coefficient series evince a fluctuation to a lesser 
degree that one pertaining to a normal distribution (k=3), and the H exponent series 
distribution for all eight indicators is platykurtic. Likewise, we cannot conclude that the 
profitability series evince a normal distribution, by means of the Jarque-Bera test. Almost all 
markets evince significant deviations from normality.  

To ensure that the variation of the Hurst statistics over time is not due to noise, this 
preliminary finding is supported by several normality test results. In particular, we have 
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employed diverse normality tests, namely Lilliefors (D), Cramer-von Mises (W2), Watson (U2), 
Anderson-Darling (A2), Kolmogorov-Smirnov and Shapiro–Wilk (W) tests. These tests are based 
on the comparison between the empirical distribution and the specified theoretical distribution 
function (the normal distribution, in our case). Another means of testing normality was to 
design two additional diagrams: QQ-plot and Detrended Normal QQ-plot. A QQ-plot charts 
observed values against a known distribution, in this case a normal distribution. If our 
distribution is normal, the plot would have observations distributed closely around the straight 
line. The Detrended Normal QQ-plot shows the differences between the observed and 
expected values of a normal distribution. If the distribution is normal, the points should cluster 
in a horizontal band around zero with no pattern. 

All these normality test results are reported in table 4 and figure 2.  
 
Table 4. Normality tests for the rolling Hurst exponent 

 
BOVES

PA 
RTS SENSEX 

SHANGHAI_
C_I 

PX OMX BUX BET 

         

Lilliefors 
(D) 

0.0705
97 

0.0470
61 

0.0791
44 

0.037442 
0.0503

57 
0.0636

43 
0.0686

08 
0.0594

97 

Probabilit
y 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

         

Cramer-
von Mises 

(W2) 

4.2976
29 

0.9250
23 

4.6150
94 

0.496045 
1.1439

84 
1.2981

03 
2.5604

19 
1.5234

89 

Probabilit
y 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

         

Watson 
(U2) 

4.1736
34 

0.8438
36 

4.1334
89 

0.490342 
1.0024

95 
1.2891

10 
2.1794

25 
1.2825

32 

Probabilit
y 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

         

Anderson-
Darling 

25.072
88 

10.016
06 

28.799
00 

2.820075 
11.514

70 
15.369

82 
15.516

70 
14.800

33 
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(A2) 

Probabilit
y 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

         

Kolmogor
ov-

Smirnova 
0.070 0.047 0.081 0.036 0.053 0.077 0.075 0.058 

Probabilit
y 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

         

Shapiro-
Wilk 

0.974 0.979 0.964 0.994 0.974 0.964 0.970 0.970 

Probabilit
y 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

a. Lilliefors Significance Correction 
 
 
 
Figure 2. QQ-plot and Detrended Normal QQ-plot for the rolling Hurst exponent 
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A picture emergent from this table is that the Gaussian distribution for Hurst exponent 

time series is strongly rejected. Also, our plots indicate some deviation from normal especially 
at the lower and higher end. Our overall conclusion is that this distribution of these Hurst 
exponents is not normal and therefore we should compare the medians of the Hurst exponents 
to compare these indices.  

In table 5, we rank these stock markets using medians for the calculated Hurst 
exponents. Subsequent to the classification presented in the table 5, according to the median 
value of the Hurst exponent, we may notice that the financial markets in Brazil and Hungary are 
closest to the random walk hypothesis, a characteristic of efficient market hypothesis, thus we 
can say that they are the less inefficient stock markets. On the other hand, the financial 
markets in Estonia, Romania and India prove to be the furthest from the random walk 
hypothesis, accurately observing the fractal Brownian motion, and thus being the most 
inefficient markets. These results reinforce our previous findings and suggest that this fractal 
exponent may be useful in assessing the stage of stock market inefficiency.  
 
Table 5. Classification of capital markets according to median value of Hurst exponent  

 Brazil Russia India China 
Hungar

y 

Czech 
Republi

c 
Estonia 

Romani
a 

Hurst 
median 

0.75146
2 

0.79773
5 

0.80943
8 

0.78325
5 

0.75881
2 

0.79897
3 

0.84852
0 

0.83911
4 

classificati
on 

8 5 3 6 7 4 1 2 

 
As mentioned above, the Hurst exponent behavior exhibits large deviation from the 

Gaussian distribution. We can therefore employ the nonparametric tests (nonparametric tests 
do not make assumptions about a specific distribution) for equality of medians for the different 
sample markets in order to test whether these rankings are meaningful. Results are 
summarized in table 6 and they suggest the significance of the difference between the median 
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values of Hurst by all the selected nonparametric tests at the 1% significance level, and 
therefore our ranking is meaningful. 
 
Table 6. Nonparametric tests for equality of medians between series 

Method df Value Probabilit
y 

Med. Chi-square 7 1174.502 0.0000 

Adj. Med. Chi-square 7 1171.253 0.0000 

Kruskal-Wallis 7 1689.508 0.0000 

Kruskal-Wallis (tie-
adj.) 

7 1689.755 0.0000 

van der Waerden 7 1677.458 0.0000 

 

5. Conclusions 
 
The application of independence tests on the logarithmic profitability of the index series 

shows that almost all markets evince significant deviations from normality. Given the 
correlation of profitability and the uncommon distribution, we are against the idea that these 
temporal series may be subject to a random pattern. Furthermore, the existence of a poor 
informational efficiency for the eight emergent capital markets is highly questionable.  

Subsequent to the calculation of the Hurst exponent for the stock indices subject to 
analysis, we have noticed that the rolling Hurst exponents are always above 0.5 indicating the 
presence of long-range dependence on stock market returns. In addition, all the indices daily 
returns exhibits a persistent behavior. According to the median value of the Hurst exponent, 
the financial markets of Brazil and Hungary prove to be the closest to the random walk 
hypothesis, a characteristic of efficient market hypothesis, so we can say that they are the less 
inefficient stock markets. On the other hand, the financial markets of Estonia, Romania and 
India prove to be the furthest to the random walk hypothesis, as they accurately observe the 
fractal Brownian motion, thus being the most inefficient markets. 

To sum up, the tests performed in this paper indicate that the yields of these emergent 
stock markets is a persistent series submitting to fractal distribution. Fractal market means that 
there exists memory, enhancement and continuity in the variation of stock market. The 
changes in asset prices increase and continue on the basis of previous state.  

To conclude, the capital market represents a system with non-linear self-adjustment 
mechanisms that may be determined by a series of potentially random time functions, which 
explain the changes in the stock returns. In the context of a non-linear market model, the stock 
return evolution may be determined not only by informational, systematic or arbitrary, but also 
by the non-linear dynamics of the market itself (intrinsic dynamics) (Ghilic-Micu 2002). 



  International Journal of Academic Research in Business and Social Sciences 
        November 2013, Vol. 3, No. 11 

ISSN: 2222-6990 

 

653  www.hrmars.com/journals 
 

Likewise, a variety of other unpredictable sources may disturb the stock exchange system, 
hence any self-adjusting system becomes much more intricate than a mere logistics function. 
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