

Full Terms & Conditions of access and use can be found at

http://hrmars.com/index.php/pages/detail/publication-ethics

A Review for Improving Software Change using Traceability
Model with Test Effort Estimation

Mazidah Mat Rejab, Suriayati Chuprat, Nurulhuda Firdaus Mohd Azmi

To Link this Article: http://dx.doi.org/10.6007/IJARBSS/v8-i4/4153 DOI:10.6007/IJARBSS/v8-i4/4153

Received: 25 Feb 2018, Revised: 19 Mar 2018, Accepted: 05 April 2018

Published Online: 18 April 2018

In-Text Citation: (Rejab, Chuprat, & Azmi, 2018)
To Cite this Article: Rejab, M. M., Chuprat, S., & Azmi, N. F. M. (2018). A Review for Improving Software Change

using Traceability Model with Test Effort Estimation. International Journal of Academic Research in Business
and Social Sciencest, 8(4), 1178–1188.

Copyright: © 2018 The Author(s)

Published by Human Resource Management Academic Research Society (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute,
translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full
attribution to the original publication and authors. The full terms of this license may be seen
at: http://creativecommons.org/licences/by/4.0/legalcode

Vol. 8, No. 4, April 2018, Pg. 1178 – 1188

http://hrmars.com/index.php/pages/detail/IJARBSS JOURNAL HOMEPAGE

http://creativecommons.org/licences/by/4.0/legalcode
http://hrmars.com/index.php/pages/detail/IJARBSS

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1179

A Review for Improving Software Change using
Traceability Model with Test Effort Estimation

Mazidah Mat Rejab1, Suriayati Chuprat2, Nurulhuda Firdaus Mohd
Azmi3

Advanced Informatics School (AIS), Universiti Teknologi Malaysia, 54100 Kuala Lumpur,
Malaysia

Abstract
Maintaining a software system includes tasks such as fixing defects, adding new features, or
modifying the software (software changes) to accommodate different environments. Then, the
modified software system needs to be tested, to ensure the changes will not having any adverse
effects on the previously validated code. Regression testing is one of the approaches which
software tester used to test the software system. The traditional regression testing strategy was
to repeat all the previous tests and retesting all the features of the program even for small
modifications. For programming with thousand lines of codes (LOC), the cost of retesting the
entire system is expensive if attempted after every change. This practice is becoming increasingly
difficult because of the demand for testing the new functionalities and correcting errors with
limited resources. Numerous techniques and tools have been proposed and developed to reduce
the costs of regression testing and to aid regression testing processes, such as test suite
reduction, test case prioritization, and test case done on the thresholds and weightings used in
regression testing. However, there is still need to study on the software traceability model of
coverage analysis in software changes during regression testing and test effort estimation on
regression testing. Hence, this paper describes the proposal for improving software changes with
hybrid traceability model and test effort estimation during regression testing. We will explain our
proposed work including the problem background, the intended research objectives, literature
review and plan for future implementation. This study is expected to contribute in developing
hybrid traceability model for large software development project to support software changes
during regression testing with test estimation approach and expected to reduce operational cost
during the implementation on software maintenance. Also, it is hoped that an efficient and
improve solution to regression testing can be realized, thus, gives the benefits to software testers
and project manager manage the software maintenance task since it is a critical part in software
project development
Keyword: Effort Estimation, Regression Testing, Software Traceability, Hybrid Traceability Model,
Software Changes.

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1180

Introduction
The software application is present in every area in today’s life. The small and large system is
developed by using the software. Change is part of everyday life. Software changes after some
time. In today’s competitive atmosphere, brand new needs are arising, and existing requirements
are altering swiftly. Changes are accomplished for various reasons, for example, including new
elements, amending a few errors or for performing improvement. The changes are intrinsic in
software and should be accepted as a fact of life. These changes are occurring very fast because
of a competitive market (Lam et al 1999). Enhancing software is a universal necessity in business
today as they encounter lots of need changes, prolonging software features and function, and
including brand new modules. We cannot ignore the critically of software features and functions
and including brand -new modules. We cannot overlook the critically of software changes
because real software system changes and becomes more complex over time, 22. The scope of
software changes in this research is restricted to managing in the software itself. i.e., source code,
design, test case and user requirement and change request. It will not cover issues related to
changes in the software development environment, human resources, version control, project
plan, and schedules. Suppose an artifact change has been requested by the client or an internal
staff/ developer. This change can be either be in requirement, test cases or code, e.g., Classes,
package, method, etc. A small change in requirement may affect some test cases and code and
vice versa as shown in Figure 1 on the management side, can estimate cost, schedule time and
human effort involved to cater this change.

Fig.1. Change Request Scenario

It is evident that one artifact change will affect the other artifact also. On the management
of the software changes, it may affect the operational cost, estimation, schedule time and human
effort. Software traceability is used to detect the modified software artefact during the change.
Software change not only affects source code but also other artefacts like the design, test
artifacts, and requirement. Requirement traceability offer support for numerous software

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1181

engineering tasks like requirement verification and validation., coverage analysis, impact
analysis, and regression testing. On top of that, requirement traceability is the recognized
component of software process improvement campaigns. Since the software evolution is
inevitable, any traceability approach must consider signification affecting aspects so that it can
reduce the evolution attempt Rochimah et al (2007). Regression testing is one of the methods
which software tester used to test the software system. It tests the software after the changes
to the software (for example; error fixes, or revise software) by testing the application again. The
purpose of regression testing is to guarantee that a modification such as a bug solution, do not
present new errors. Regression testing is carried out to go through most of the section of
modified code and attain absolute test coverage.

The traditional regression testing strategy was to repeat all the previous tests and retesting
all the features of the program even for small modifications. For programming with thousand
lines of codes (LOC), the cost of retesting the entire system is expensive if attempted after every
change. This practice is becoming increasingly difficult because of the demand for testing the
new functionalities and correcting errors with limited resources. Numerous techniques and tools
have been proposed and developed to reduce the costs of regression testing and to aid
regression testing processes, such as test suite reduction, test case prioritization, and test case
selection. Studies have also been done on the thresholds and weightings used in regression
testing. However, there is still needed to study the software traceability model of coverage
analysis in software changes during regression testing and test effort estimation on regression
testing. Hence, the purpose of this research is to improve software changes with hybrid
traceability model and test effort estimation during regression testing. From the model proposed
it is expected to reduce operational cost during the implementation of software maintenance.
This paper is organized as follows. In Section 2, the problem background related to the domain
of the proposed study will be elaborate. This includes identification of the research questions
concerning to the proposed work. Later in Section 3, the literature review regarding the problem
domain identified is discussed. The proposed methodology for the proposed study is presented
in Section 4. Finally, conclusion and future work towards the implementation of the proposed
research are summarized in the last section.

Problem Background
Many people have realized that software and its applications will evolve as it adapted to changing
environments, changing needs, new concepts and innovative technologies. The software will
grow in the number of functions, components, and interfaces. Lehman 12 had described the
previous modules might be extended for user beyond their original design. Subsequently,
software modification and evolution are unavoidable. Much of the time spent on software
maintenance is in modifying and retesting the software. Regression testing is a testing process
which is applied after a program modification to detect errors introduced during change and to
increase one's confidence that the modified programs till meets its specification. It involves
exercising the revised program with some existing tests and new tests to re-establish assurance
that the program will perform according to the (possibly modified) specifications. The problem
of regression testing is not the same as the problem of testing, as most people have assumed.
Regression testing involves testing the portion of the program affected by the modification,
instead of the whole program. It is needed throughout the life of a product, once after every

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1182

change, while testing is done during the development of the product or its enhancements. The
traditional regression testing strategy was to repeat all the previous tests and retesting all the
features of the program even for small modifications. For programming-in-the-large, the cost of
retesting the entire system is expensive if attempted after every change. This practice is
becoming increasingly difficult because of the demand for testing the new functionalities and
correcting errors with limited computer and human resources. An efficient solution to regression
testing can bring significant benefits to software developers. Several studies have indicated that
software maintenance and modification can require over 50 percent of the total life-cycle cost
(Lientz, 2005). Testing the new functionalities and correcting errors with limited computer and
human resources. An efficient solution to regression testing can bring significant benefits to
software developers. Several studies have indicated that software maintenance and modification
can require over 50 percent of the total life-cycle cost (Lientz, 2005)

For some projects, the maintenance cost can be higher. For example, for a given weapons
system, about 25 percent of the software life-cycle costs are for development, and 75 percent
for maintenance (G. Stuebing). Also, the increasing number of software applications being
deployed may turn software maintenance into a significant subindustry by the close of the
century, if not sooner. Numerous techniques and tools have been proposed and developed to
reduce the costs of regression testing and to aid regression testing processes, such as test suite
reduction, test case prioritization, and test case selection. Test suite reduction consists of
removing unneeded or duplicated tests. Test selection is the process of identifying which
regression tests apply to a given software change. Test case prioritization is the process of
ordering those regression tests to either find faults earlier or to maximize the number of errors
detected without running all the tests. Because the underlying motivation for regression testing
techniques is to improve the cost-effectiveness of regression testing, research has also been done
showing that proper thresholds and weightings must be used in regression testing techniques to
improve economic benefits.

Software inevitably changes however well-conceived and well written it initially may be.
Operational failures expose faults to be repaired. Mistaken and changed requirement cause the
software to be reworked. New uses of old software yield new functionality not initially conceived
in the requirements. The management of this change is critical to the continuing usefulness of
the software. The new feature added to a system may be accommodated by the standard
software development processes. According to Hartmann, regression testing attempts to
revalidate the old function inherited from the old version. The new version should behave exactly
like the past except where the partial operational requirement for new versions of the system.
Much of this maintenance activity involves modifications to, and regression testing of, existing
programs. Therefore, the importance of the regression testing process in software development
cannot be overstated. There has been little work done in this significant area.

Numerous techniques and tools have been proposed and developed to reduce the costs of
regression testing and to aid regression testing processes, such as test suite reduction, test case
prioritization, and test case selection. Studies have also been done on the thresholds and
weightings used in regression testing. However, there is still needed to study the software
traceability model of coverage analysis in software changes during regression testing and test
effort estimation on regression testing. Hence, we are proposing a study on improving software
changes with hybrid traceability model and test effort estimation during regression testing. From

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1183

the model suggested it is expected to reduce operational cost during
the implementation of software maintenance.
The hypothesis of the proposed study is as follow: “The hybrid of traceability model with test
effort estimation in regression testing can improve the software changes with a reduction in
operational cost.” The main research questions derived from this study is:
“How the hybrid of traceability model with test effort estimation in regression testing can
improve the software changes with a reduction in operational cost?”
From the main research question, sub-research questions are identified as below:

i. What are the characteristics of software traceability and test effort estimation in regression
testing for improving the software changes?
ii. What are the types used approaches for supporting software changes in Regression testing?
iii. What are the components in enhancing software traceability model for reducing operational
cost during regression testing?
iv. How to evaluate the improved software traceability model in reducing operational cost for a
software project? The following section will describe preliminary literature review of the
proposed study

Literature Review
A software change is inevitable at all stages of a software project. Change management will help
the software Project manager direct and coordinate those changes. The only constant in software
development is changing. From the original concept through phases of completion to
maintenance updates, a software product is continually evolving. One single code change can
significantly influence a wide range of software systems and their users.
For example, adding a new feature can spread defects in several modules, while changing an API
method can improve the performance of all client programs. These changes determine whether
the software meets its requirements and the project completes on time and within
Budget. Studies by Aggarwal et. Al has investigated influential software changes which are;
i. Adding a new lock mechanism will influence not only specific to the module but rather on full
system problem.
ii. Changing build configurations may affect the entire program.
iii. Improving performance in a particular environment may improve the of all applications using
the library

Regression testing is part of traditional testing activities, which also comprise: test case
generation, test execution, result evaluation, and coverage analysis. These events will cover the
process of re-testing a software system after changes have been made to ensure that the new
version of the system has retained the capabilities of the old version and that no new defects
have been introduced. Regression testing is an essential activity, but it is also time-consuming
and costly. Thus, regression testing should concentrate on those parts of the system that have
been modified or which are affected by changes1. According to K. K Aggrawal & Y.Singh, they
described the regression testing as: “Let P is the original software product, P’ is the modified
software product and T is the set test case to test P.” A typical regression testing on modified

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1184

software process areas are as follow Select T’∈ T, a set of test case to execute on the modified
software product P.’

[1] Test P’ with T,' to verify modified software product’s correctness concerning T.’
[2] If necessary, create T’’, a set of new test cases to test P’.
[3] Test P’ with new test case T’’, to validate P’ concerning T’’.
[4] Create T’’, a new test suite and test history for P’ for T,' T’’, T’’’.

Over the past two-decade, a study by Rosero, R. H. et al had claimed that regression testing
techniques give a commence relevant to the emergence of a new approach for developing the
software. They have listed almost several methods in regression testing according to its criteria
which are (Bennet, 2000) ; regression test minimization techniques,r egression test selection
(RTS) techniques, regression test prioritization (RTP) techniques and regression test optimization
(RTO) techniques. While automated code-based regression-testing support had mainly been
studied and is supported by many tools, however, there is a lack of automatic support/studies on
the feasibility of model-based regression testing (Cleland et al 2000)

Numerous techniques and tools have been proposed and developed to reduce the costs of
regression testing and to aid regression testing processes, such as test suite reduction, test case
prioritization, and test case selection. Studies have also been done on the thresholds and
weightings used in regression testing. However, there is still needed to study the software
traceability model of coverage analysis in software changes during regression testing and test
effort estimation on regression testing. Many strategies utilize test case to code to determine
code coverage nevertheless using both is boosting to gauge integrated hybrid coverage 6. Test
case coverage implies to the situation whereby a software application adjustment will lead to
altering code at last. It results in generate coverage again after any modification. Therefore,
coverage reconstruction has a crucial past in test coverage analysis.

The efficiency of code coverage analysis is used by a strategy. The usual coverage item
utilized in different approaches includes statement, block, path, condition, loop, condition,
modified condition/decision, method, class, package, design, and requirement. It could be
obtained by rerunning the test case, traceability hyperlink existence measurement, and by
regenerating traceability matrix. A useful approach in applying software traceability is through
the implementation of traceability matrix. Traceability matrix is usually created by taking and
placing identifiers of one document in the left column of the table and identifiers of the other
document across the tops row of the traceability matrix.

 A cross mark is placed at the intersection of the cells when an item in the left column is
associated with an object over the top. This value specifies the mapping of these two items. A
zero value is put in all the other non-related cross-section which indicates that there is no
relationship between this column and row value. Traceability matrix may be used to view if
the existing project demands are being complied with and assisting in the production of a request
for proposal, numerous deliverable documents, and project plan activities.

The implementation of traceability matrix reveals that software traceability is useful to
detect the affected software artifacts during the change. It is made use to connect software
program artifacts (code, requirement and test case) in each of two means; code traceability (test
case to code) and requirement traceability (requirement to test case). Traceability information
provides as ‘assistance’ to the software developers or software maintainers to understand
software dependencies among software artifacts in all software phases6. Traceability techniques

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1185

are mainly used between requirements and software test cases. Keeping the traceability
information between software artifacts and requirements may be useful to evaluate the impact
of change requests and help maintenance activities. Over the past decade, researchers have
focused on specific areas of the traceability problem. Developing more sophisticated tooling,
promoting strategic planning, applying information retrieval techniques capable of semi-
automating the trace creation and maintenance process, developing new trace query languages
and visualization techniques that use trace links, and applying traceability in specific domains
such as Model Driven Development, product line systems, and agile project environments.

 These issues and challenges have been addressed by Aranha and Borba7 in their conceptual
paper of the trends and future directions in software traceability. During the regression testing,
test effort estimation will estimate of the testing length, effort, cost and schedule for a particular
software test project in a proper environment for distinct methods, tools and techniques. The
test effort is the establishment of the effort spends on test activity and the effort spends on
debug activity9. Several approaches concerning test effort estimation have been proposed. For
example, S. Nageshwaran proposed a simple mechanism to calculate software test effort
estimation. This scheme made use of use case point to find out test effort. Later, D. Almeida et
al. proposed an approach to estimation of test effort, with the help of software use cases. This
method calculates test effort by the normal scenario of use case. Further, Z. Xiochun proposed
estimating the size of test suit. Their work introduced the test case number execution complexity
and tester defined as 3- dimensional vector to find out a test suit. The work discussed an
approach which is based on before time estimation of test execution. Their proposed work
summarizes that for testing of any program, tester predicts test case and then calculate execution
complexity10. Recently, Kama et. al13 had introduced new change effort estimation tool called as
COCHCOMO (Constructive Change Cost Model). The model is claimed to be able to take into
account the inconsistent states of software artifacts in its estimation process. To summarize,

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1186

Table 1 provide the summary of the existing studies conducted in the area of software
changes particularly in regression testing with emphasize on coverage analysis techniques.

Table.1. Software Changes Based on Regression Testing Studies

Model & Author Traceability
Approach

Impact
Analysis

Regression
testing

Change
Management

Test Effort
Estimation

JavaCode Coverage
Lingampally et al.,
(2007)

No Yes No Yes (Before
Change)

No

CATIA
(Suhaimi (2006)

Yes Yes No Yes No

GRAYZER
Faizah et al., (2012)

Yes No No No No

RequirementRTS
Kapfhammer et al.,
(2008)

Yes No No Yes No

RTSDIF
Mall R. et al., (2011)

No No Yes Yes No

HYCAT
Shahid (2016)

Yes Yes Yes Yes No

Lam suggest that changing requirement are the main issues of the re-engineering and

software maintenance activities. Also, a report published by the Standish Group International 21
which inquired 13,522 software project. Indicate that out of the surveyed project only 29 percent
are successful, 18 percent is considered as“ failed” and 53 percent are regarded as “ suspected”
and the main cause of the failed project is the requirement change20. This shows that most of the
software maintenance activities concern on adaptive and completeness maintenance. For this
intent, the organization must get to manage requirement adaptation as part of the border
software evolution approach. Furthermore, Nurmuliani et. al states that 40% of requirement
need rework during the software development projects.

Conclusion and Future Work
Several reasons for the difficulty of software change control can be found in the literature. These
include loss of design knowledge, of the original requirement, accumulation of problem and
change need. Furthermore, lack of design for change, time pressure, diversity of tools and
information, poor images of changes function, poor maintainability of just releasing software,
code decay, and verification across several product versions, and focusing on developing new
software instead of managing the existing system. Therefore, it is hoped that with the proposed
study on software traceability model for change impact analysis with test effort estimation during
regression testing it will bring up the solution to aid the software testing team, project manager
and another stakeholder in facing the request changes in software maintenance phase

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1187

Acknowledgment
The authors would like to thank Advanced Informatics School (AIS), Universiti Teknologi Malaysia
(UTM) for the support of the resources.

Corresponding Author
Mazidah Mat Rejab. Advanced Informatic School (AIS), Universiti Teknologi Malaysia, 54100
Kuala Lumpur, Malaysia (mazidah3@live.utm.my)

References
Aggarwal, K. K., Singh, Y., Kaur, A., & Malhotra, R. (2007). Investigating effect of Design Metrics

on Fault Proneness in Object-Oriented Systems. Journal of Object Technology, 6(10), 127-
141.

Aranha, E., & Borba, P. (2007, September). Test effort estimation models based on test
specifications. In Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION, 2007. TAICPART-MUTATION 2007 (pp. 67-71). IEEE.

Bennett, K. H., & Rajlich, V. T. (2000, May). Software maintenance and evolution: a roadmap. In
Proceedings of the Conference on the Future of Software Engineering (pp. 73-87). ACM.

Cleland-Huang, J., Gotel, O. C., Hayes, H. J., Mäder, P., & Zisman, A. (2014, May). Software
traceability: trends and future directions. In Proceedings of the on Future of Software
Engineering (pp. 55-69). ACM.

Kama, N., Basri, S., Asl, M. H., & Ibrahim, R. (2014). COCHCOMO: A Change Effort Estimation Tool
for Software Development Phase. In SoMeT (pp. 1029-1045)

Kushwaha, D. S., & Misra, A. K. (2008). Software test effort estimation. ACM SIGSOFT Software
Engineering Notes, 33(3), 6.

Lam, W., & Shankararaman, V. (1999). Requirements change: a dissection of management issues.
In EUROMICRO Conference, 1999. Proceedings. 25th (Vol. 2, pp. 244-251). IEEE.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. Proceedings of the
IEEE, 68(9), 1060-1076.

Li, D., Li, L., Kim, D., Bissyandé, T. F., Lo, D., & Traon, Y. L. (2016). Watch out for this commit! A
study of influential software changes. arXiv preprint arXiv:1606.03266.

Nageswaran, S. (2001). Test effort estimation using use case points. In Quality Week (Vol. 6, pp.
1-6).

Naslavsky, L., & Richardson, D. J. (2007). Using traceability to support model-based regression
testing. In Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering (pp. 567-570). ACM.

Nurmuliani, N., Zowghi, D., & Powell, S. (2004). Analysis of requirements volatility during
software development life cycle. In Software Engineering Conference, 2004. Proceedings.
2004 Australian (pp. 28-37). IEEE.

Ramler, R., Salomon, C., Buchgeher, G., & Lusser, M. (2017). Tool Support for Change-Based
Regression Testing: An Industry Experience Report. In International Conference on Software
Quality (pp. 133-152). Springer, Cham.

International Journal of Academic Research in Business and Social Sciences

Vol. 8 , No. 4, April 2018, E-ISSN: 2222-6990 © 2018 HRMARS

1188

Rochimah, S., Kadir, W. M. W., & Abdullah, A. H. (2007). An evaluation of traceability approaches
to support software evolution. In Software Engineering Advances, 2007. ICSEA 2007.
International Conference on (pp. 19-19). IEEE.

Rosero, R. H., Gómez, O. S., & Rodríguez, G. (2016). 15 years of software regression testing
techniques—A survey. International Journal of Software Engineering and Knowledge
Engineering, 26(05), 675-689.

Shahid, M., & Ibrahim, S. (2016). Change impact analysis with a software traceability approach to
support software maintenance. In Applied Sciences and Technology (IBCAST), 2016 13th
International Bhurban Conference on (pp. 391-396). IEEE.

Sharma, A., & Kushwaha, D. S. (2012). Applying requirement based complexity for the estimation
of software development and testing effort. ACM SIGSOFT Software Engineering Notes,
37(1), 1-11.

Stuebing, H. G. (1984). A software engineering environment (SEE) for weapon system software.
IEEE transactions on software engineering, (4), 384-397.

The Standish Group, Chaos, Standish Group Report, 2004.
Zhu, X., Zhou, B., Wang, F., Qu, Y., & Chen, L. (2008, September). Estimate test execution effort

at an early stage: An empirical study. In Cyberworlds, 2008 International Conference on (pp.
195-200). IEEE.

