

Validity and Reliability of Students' Science and Technology Culture Instrument (BST-M) using Rasch Measurement Model

Shahril Sabudin, Azlin Norhaini Mansor, Subahan Mohd. Meerah, Azliza Muhammad

To Link this Article: http://dx.doi.org/10.6007/IJARBSS/v8-i5/4244
DOI:10.6007/IJARBSS/v8-i5/4244

Received: 03 April 2018, Revised: 29 April 2018, Accepted: 05 May 2018

Published Online: 18 May 2018

In-Text Citation: (Sabudin, Mansor, Meerah, \& Muhammad, 2018)
To Cite this Article: Sabudin, S., Mansor, A. N., Meerah, S. M., \& Muhammad, A. (2018). Validity and Reliability of Students' Science and Technology Culture Instrument (BST-M) using Rasch Measurement Model.
International Journal of Academic Research in Business and Social Sciences, 8(5), 970-979.
Copyright: © 2018 The Author(s)
Published by Human Resource Management Academic Research Society (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode

Vol. 8, No. 5, May 2018, Pg. 970-979
 EXPLORING INTELLECTUAL CAPITAL

Validity and Reliability of Students' Science and Technology Culture Instrument (BST-M) using Rasch Measurement Model

Shahril Sabudin ${ }^{1}$, Azlin Norhaini Mansor ${ }^{1}$, Subahan Mohd. Meerah ${ }^{1}$, Azliza Muhammad ${ }^{2}$
${ }^{1}$ Faculty of Education, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor Darul Ehsan, Malaysia, ${ }^{2}$ Faculty of Human Development, Universiti Pendidikan Sultan Idris 35900 Tanjong Malim, Perak Darul Ridzuan, Malaysia

Abstract

Students' Science and Technology Culture Instrument (Budaya Sains dan Teknologi Murid, BSTM) was developed to measure the level of Science and Technology Culture among the students. A total of 800 Form Two students from several schools in Seremban, Negeri Sembilan have been selected as a sample study. This study was conducted to determine the reliability and construct validity of the instrument using Rasch Model via Winstep 3.73 software. The constructs consist of Value and Perception on Science and Technology (B); Perception on Science and Technology (C); Scientific Attitude and Common Practice (D); Scientific Mind Habits and Environmental Concerns (E); and Personality Traits (F). From the analysis, it is found that PTMEA Corr has a positive value, in which items are able to differentiate the capabilities of the respondents. Besides, the results of infit and outfit mean square are ranged between 0.60 and 1.4. The quality of items is high because the reliability value is also high. In addition, the separation of item and person is at the acceptable range. However, statistical data shows that 8 out of 110 items need to be modified.

Keywords: Validity and Reliability of Instrument, Rasch Measurement Model, Construct Validity.

Introduction

The rapid development of science and technology (S\&T) in the $21^{\text {st }}$ century can be obviously seen. Likewise, the growth has a massive effect in human's life. Nowadays, the use of technology and scientific equipment's or devices in daily life is very important. Several examples are including telecommunication technologies such as smart phones, computers, and the Internet. In fact, the use of motor vehicles and other tools related to the basis of scientific knowledge are also very significant in this modern era. Recently, S\&T knowledge has become the basis of development and progress of most countries in this world. There is an increase in the number of professions
that requires to be linked with science concepts and high technology tools. In addition, the future of society needs to be decided based on scientific knowledge (Lee \& Luykx, 2007). Consequently, Malaysia Education plays a major role in developing scientific knowledge among the younger generation in line with Vision 2020's goals. This is due to the fact that S\&T field is very crucial. Thus, the development and enrichment of Science and Technology Culture among students in Malaysia are believed to be achievable and feasible (Curriculum Development Centre, 2003).

However, the decline in secondary-level students' participation in S\&T field needs to be taken into consideration. Even though the percentage of qualified students pursuing S\&T field is higher, but the percentage of actual S\&T students is lower than that. MOE statistics show that the participation of students in science field from 2001 to 2011 has never achieved the 60:40 target ratio of science to non-science students as aimed by national education policy (Ministry of Education Malaysia, 2012). Indirectly, this situation indicates that the number of students who are interested in S\&T field is decreasing. These scenarios have raised concerns regarding the ability to shape S\&T Culture community in the future, as proposed by The National Philosophy of Science Education (Curriculum Development Centre, 2003). Other than that, this situation needs to be improved in order to give good implication to the national development process (Halim, 2013). Hence, an instrument called Students' Science and Technology Culture Instrument (BSTM) has been designed for this purpose.

Literature Review

The validity and reliability of instruments are very essential in order to ensure the accuracy and consistency of the instruments (Ariffin, Omar, Isa, \& Sharif, 2010). The content validity should take precedence, followed by construct validity of the instrument in verifying whether the instrument is valid and reliable (Abdul Aziz, Masodi \& Zaharim, 2013, m.s 67). On the other hand, construct validity is crucial to identify the credibility and quality of the instrument. According to Ariffin et al. (2010), reliability is the consistency of a decision on time, while validity refers to the extent to which a test can be tested in line with the test objectives. Therefore, Rasch measurement model is applied in this study to determine the validity and reliability of BST-M instruments.

According to Rasch measurement model, the validity of a questionnaire is identified by referring a positive value of point-measure correlation coefficient (PTMEA Corr). The value of PTMEA Corr shows the item is able to differentiate the ability of the respondent. Furthermore, a negative or zero value indicates a conflict between the responses and the construct. Wright and Masters (1982) stated that infit and outfit mean square (MNSQ) for each item should be within 0.6 to 1.5. On the other hand, Bond and Fox (2015) mentioned that MNSQ should be within 0.6 to 1.4. If MNSQ values are not within these ranges, the items need to be removed or modified. The description of MNSQ value range and measurement implications are shown in Table 1 below.

Table 1: Description of MNSQ range (Linacre, 2002b)

Mean square value (MNSQ)	Measurement Implications
>2.0	Distorts or degrades the measurement system. It is probably caused by only one or two observations.
$1.5-2.0$	Unproductive for measurement construction, but not degrading. $0.5-1.5$ <0.5
Productive for measurement. Less productive for measurement, but not degrading. It may produce misleading reliability and separation coefficients.	

The reliability statistic used in Rasch model is referring to the person and item separation index. Bond and Fox (2015) mentioned that the accepted criterion for strong reliability is it has a value more than 0.8 . Meanwhile for the separation index, the higher the separation value, the more precise the measurement is done (Wright \& Masters, 1982). However, Linacre (2002) argues that isolation value of more than 2 is good. The study also refers to the quality of measurements stating that the separation index between 3 and 4 as good and more than 5 as excellent (Fisher, 2007).

Methodology

This study was conducted using the developed set of questionnaires. A total of 110 items were contained in this questionnaire in the form of 5-point Likert scale. The questionnaires were distributed to chosen 800 Form Two students (Male $=330$, 41.3\%; Female $=470,58.8 \%$) by stratified random sampling from 30 secondary schools in Seremban, Negeri Sembilan. After that, the collected data were analyzed using SPSS and Winstep 3.64 .2 software. Construct validity was determined by several factors namely reliability and separation index, item polarity, fit and misfit items.

Research Findings

Item Polarity and Point-measure Correlation

Table 2 shows the PTMEA Corr value for each item is positive, except E3, F15, E2, D3, D2 and E6 items which show non-compliance responses to the constructs. These items need to be reviewed.

Table 2: Correlation Order for Likert scale items
TABLE 26.1 data murid primary800.sav ZOU441WS.TXT Apr 18 9:02 2018 INPUT: 800 PERSON 110 ITEM REPORTED: 800 PERSON 110 ITEM 5 CATS WINSTEPS 3.73

PERSON: REAL SEP.: 4.06 REL.: . 94 ... ITEM: REAL SEP.: 13.77 REL.: . 99

ITEM STATISTICS: CORRELATION ORDER
|ENTRY TOTAL TOTAL MODEL| INFIT | OUTFIT |PT-MEASURE |EXACT MATCH| | |NUMBER SCORE COUNT MEASURE S.E.|MNSQ ZSTD|MNSQ ZSTD|CORR. EXP.| OBS\% EXP\%| ITEM |

Fit and Misfit Items

Based on Table 2, there were 8 items (E3, F15, E2, D3, D2, E6, C24 and D1) which were unproductive for measurement construction, but not degrading. These items need to be reviewed and modified.

Reliability and Separation Index

According to Table 3, Rasch analysis for Likert scale items shows a high reliability value for person, with 0.94 and 0.99 for each item. It indicates that the items are adequate to measure what should be measured. Moreover, the separation index for person is 4.06 while the separation index for the item is 13.77 .

Table 3: Statistical summary of Likert scale items

By detailing or specifying the reliability and separation index, constructs (B), (E) and (F) are more capable in measuring respondent's capabilities through items in the constructs (Table 4).

Table 4: Reliability and isolation index according to the constructs

Construct	Isolation		Reliability		Measured dimension (\%)
Value and Perception on Science and Technology (B)	10.27	2.01	0.99	0.80	24.9
Perception on Science and Technology (C)	22.10	1.12	1.00	0.56	57.2
Scientific Attitude and Common Practice (D)	17.85	1.29	1.00	0.62	44.2
Scientific Mind Habits and Environmental Concerns (E)	12.87	2.78	0.99	0.89	40.1
Personality					
Traits (F)					

Conclusion

In conclusion, item analysis is the best method to control the quality of applied measuring tools. Across all constructs, individual separation index are good and the item separation index are excellent. Overall items were found moving towards the constructs except few need to be revised. The next step in this research will be improving the items in this instrument. The data collected using this validated instrument will then be analysed using Hierarchy Linear Modelling (HLM) analysis to determine the relationship between the student's S\&T Culture and teacher's productive pedagogy.

Acknowledgement

The authors acknowledged the Ministry of Education Malaysia, Universiti Kebangsaan Malaysia and Universiti Pendidikan Sultan Idris for the full support of this research.

Corresponding Author

Name: Shahril Sabudin
Country: Malaysia
Email: shahrilbpk@gmail.com

References

Aziz, A., Masodi, M. S., \& Zaharim, A. (2013). Asas model pengukuran Rasch. Bangi: Universiti Kebangsaan Malaysia.
Ariffin, S. R., Omar, B., Isa, A. \& Sharif, S. (2010). Validity and reliability multiple intelligent item using Rasch measurement model. Procedia - Social and Behavioral Sciences, 9, 729-733. https://doi.org/10.1016/j.sbspro.2010.12.225
Ariffin, S. R., Asari, M. S., Mohamed, S., Shahar, S. N., Ishak, M. N., Din, R., \& Yasin, M. S. F. (2010). Validity of UKM1 intelligence test using Rasch analysis. Procedia - Social and Behavioral Sciences, 7(C)(2), 205-209. https://doi.org/10.1016/j.sbspro.2010.10.029
Bond, T. G., \& Fox, C. M. (2015). Applying the Rasch model. Fundamental measurement in the human sciences (3rd ed.). New York: Routledge.
Curriculum Development Centre. (2003). Secondary school science syllabus. Kuala Lumpur: Kementerian Pendidikan Malaysia.
Fisher, J. W. P. (2007). Rating scale instrument quality criteria. Rasch Measurement Transactions, 21(1),1095
Halim, L. (2013). Pendidikan sains dan pembangunan masyarakat berliterasi sains. Bangi: Universiti Kebangsaan Malaysia.
Kementerian Pendidikan Malaysia. (2012). Laporan strategi mencapai dasar 60:40 aliran Sains/Teknikal : Sastera. Putrajaya.
Lee, O., \& Luykx, A. (2007). Science education and student diversity : Race/ethnicity,language, culture and sosioeconomic status. In S. A. Abell \& N. G. Lederman (Eds.), Handbook of research on science education. New Jersey: Routledge.
Linacre, J. M. (2002a). Optimizing rating scale category effectiveness. Journal of Applied Measurement, 3, 85-106.
Linacre, J. M. (2002b). What do infit and outfit, mean-square and standardized mean ? Rasch Measurement Transactions, 16(2), 878.
Wright, B. D., \& Masters, G. N. (1982). Rating Scale Analysis. Rasch Measurement. Chicago: MESA Press.

