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Abstract 
The existing procedures for structural equation modelling involve in goodness of fit test for the 
sample covariance matrix by the structural model can no longer work in high dimensional datasets. 
The sample covariance can easily be influenced by outlier’s presence in the datasets. This affect the 
estimation of the sample mean and sample covariance not being accurate and as well cause 
inefficiency in the computation. Therefore, there is need to suggest a robust covariance estimator 
the 𝐿1-median with Weiszfeld algorithm that will resolve the outliers problem in high dimensional 
dataset. This test is subjected to conditions of sample size (𝑛), variables (𝑝) percentages of outliers 
(𝜀) with 𝛼 = 0.05. Simulation study carried out and the results show that when variable is minor both 
test performed but the new robust covariance test is better. At both middle and greater variables the 
existing test cannot compute the rate when 𝑝 > 𝑛 cases. Generally, the results shows that the newly 
incorporated robust covariance test performed better compare to the existing test. 
 
Introduction 
The original methods for structural equation model include fitting the regular sample covariance 
matrix by a suggested maximum likelihood structural model. Since the assumption of normality 
required in the original estimation methods is frequently not satisfied in high dimensional datasets, 
Huber (1964). When number of observation, (𝑝) is larger than the sample size, (𝑛). The sample 
covariance matrix is easily influenced by a few outliers present, the usual exercise of modeling the 
sample covariance matrix can lead to inaccurate estimates as well as overestimated fit in high 
dimensional cases.  Hence, causing the inability of the model to provide adequate fit or statistical 
explanation. However, when outliers exist in the data, the use of sample mean vector will result in 
poor estimation.  
 
Thus, we need estimators which are robust to the existence of outliers to resolve the problem. In this 
research, in order to overcome these problem, several literatures are presented in statistics that 
highlight the importance of robustness of the sample covariance matrices.  A wide range of robust 
estimators of multivariate location and scatter are available.  
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Some of them are based on the minimization of a robust scale of Mahalanobis distance such as M-
estimator (Campbell, 1980), minimum volume ellipsoid (MVE), minimum covariance determinant 
(MCD) estimates {Rousseeuw & Driessen, 1999, Pison, Van Aelst & Willems, 2003), S-estimates 
(Davies, 1987), and 𝜏-estimates (Bianco & Boente, 2002). Others are based on projections, for 
example, the Stahel-Donoho estimate (SDE), P-estimates (Maronna, Stahel, & Yohai, 1992) and 
Kurtosis1 (Pena & Prieto, 2001). But, the minimum volume ellipsoid (MVE) and minimum covariance 
determinant (MCD) estimator introduced by Rousseeuw (1984; 1985) has received a considerable 
attention by scientific community and widely used in practice.  
For high dimensional data computing, the MVE takes too much time and find it challenging to resolve 
the outlier’s problem.  Therefore, we proposed a modification of ML-test by incorporating the 
Weiszfeld’s algorithm covariance matrix (Vardi & Zhang, 2000 Cardot & Godichon-Baggioni, 2017), 
for developing a new robust covariance matrix in the presence of outliers. To resolve the outlier’s 
problem in high dimensional data sets. The most useful model in data analysis and outliers in high 
dimension is possibly the modelling of data by high dimensional data set with the median Weiszfeld’s 
algorithm covariance matrix they are provably immune to outliers. Given data with a large fraction 
of extreme outliers, a robust estimator guarantees the returned value is still within the non-outlier 
part of the data (Tang & Phillips, 2016 and Arrigoni, Rossi, Fragneto & Fusiello, 2018). 
 
Methodology 
Mathematically, the original ML-test is given as: 

𝐹𝑀𝐿(θ̂) = 𝑙𝑜𝑔|𝚺(θ̂)| + 𝑡𝑟 (𝑆θ−1(θ̂)) − 𝑙𝑜𝑔|𝑆| − (𝑝 + 𝑞)     (1) 

where 𝜮(θ̂) is the variance structure, θ̂ estimated parameters, 𝑡𝑟 is the trace of a matrix, 𝑆 sample 

variance matrix, θ−1 inverse of a matrix, 𝑝 endogenous latent factors observation, and 𝑞 the 
exogenous latent factors observation (Bollen, Kirby,  Curran,  Paxton & Chen, 2007).  
The sample covariance matrix is most often assumed as the estimate of the population covariance 
matrix is most often assumed for this purposes is as: 

𝑆 = 1/𝑛 ∑ (𝑛
𝑖=1 x(i) − x̅)(x(i) − x̅) ′,        (2) 

where x̅ = ∑ x(i)/n  is the mean of the sample covariance matrix.   
In order to develop robust ML-test with SEM denoted by MLSEM, the covariance of  𝐿1-Weiszfeld, 
𝑆𝐿1−Weiszfeld  where 𝑖 = 1, 2, … , 𝑚 is replaced into Equation 1.  

Therefore, the test now become the following, 

𝐹𝑀𝐿(θ̂) = 𝑙𝑜𝑔|𝚺(θ̂)| + 𝑡𝑟 (𝑆𝐿1−Weiszfeldθ−1(θ̂)) − 𝑙𝑜𝑔|𝑆𝐿1−Weiszfeld(𝑖)| − (𝑝 + 𝑞)      (3) Where  

𝑆𝐿1−Weiszfeld= 1/𝑁 ∑ 𝑆𝐿1−Weiszfeld(𝑖)
𝑚
𝑖=1  is the pooled sample covariance matrix of 𝐿1-Weiszfeld 

estimator. 
𝐿1 − Weiszfeld(𝑖) is the number of subgroup where the stability of matrices is hypothesized. 
𝑁 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝐿1−Weiszfeld; 𝑛𝑖 = 𝑖-th sample size. The measure of estimation that is 

performed in ML-test is the Type I error test rate on equation 1 and 3. The original test now become 
SEM𝑂-test and modified SEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑 -test, we be compared in terms performance.   
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Results and Discussions 
The main result is on robust covariance goodness of fit test in the presence of outliers. We compare 
original ML𝑆𝐸𝑀-test and modified MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

- test in terms of Type I error rate. For each of the 

test 3 types of data contaminations are used to examine the strength and weakness of the tests. Also, 
all these tests have been open to various conditions which are number of variables (𝑝), sample size 
(𝑛), percentage of outliers (𝜀) and Mean Shift (𝜇). The summary of test comparison are in form of 
table. Start with sample size (𝑛), in the first column in each of the table, followed by percentage of 
outliers (𝜀) and Mean Shift (𝜇). The following two columns detailed the Type I error rate of ML𝑆𝐸𝑀-
test and the modified MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

- test examined at different sample sizes in the study. The values 

that is closest to the significance level and within [0.025-0.075] are shaded in the tables with green 
and pink colours, whereas red colours denotes results cannot be computed.  
In addition, Table 3.1 to 3.6 recorded the Type I error rate for each condition are arranged based on 
the ascending number of variables, specifically, minor, middle and greater variables (𝑝 = 15 and 18,
𝑝 = 20 and 25, 𝑝 = 30 and 50, respectively, 𝑛 = 10, 20, 30, 40,50, 60 and 70 with 𝛼 = 0.05.   
 
Type I Error for Minor Number of Variables (𝒑 = 𝟏𝟓 𝐚𝐧𝐝 𝟏𝟖) 
In Table 3.1 the Type I error rate of MLSEM and MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-tests are recorded. The overall results 

show that MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑
-test is more robust compared to MLSEM-test. All the values of Type I error 

rate of MLSEM-test fall within the interval [0.025, 0.075] in blue when 𝑝 = 15 and 𝑛 =
10, 20, 30, 40, 60 and 70, except for conditions when 𝜀 = 0 and 𝜇 = 0, 𝑛 = 40 and 70, at  𝜀 = 10 
and 𝜇 = 3 when 𝑛 = 30, 40 and 70, at  𝜀 = 10 and 𝜇 = 5 when 𝑛 = 30, 40 and 70, at 𝜀 = 20 and 
𝜇 = 3 when 𝑛 = 30, 40, 60 and 70 and 𝜀 = 20 and 𝜇 = 5 when 𝑛 = 30, 40 and 70. Similarly, for 
MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test shaded in green, when 𝜀 = 0 and 10 and 𝜇 = 0, 3 and 5 only when 𝑛 =

 60 and 70, also, when 𝜀 = 20 and 𝜇 =  3 and 5 only when 𝑛 = 40, 60 and 70. From the results, it 
shows that MLSEM-test is still well perform where 16 out of 30 conditions are non-robust, but  
MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test is more robust compare to MLSEM-test and performed very well 24 out of 30 fall 

within the robust interval.  
In Table 3.2. The rate contamination cannot be computed when 𝑝 > 𝑛 cases. All the values of Type I 
error rate of MLSEM-test fall within the interval [0.025, 0.075] in blue when 𝑝 = 18 and 𝑛 =
10, 20, 30, 40, 60 and 70, except for conditions when 𝜀 = 0 and 𝜇 = 0, 𝑛 = 40 and 70, at  𝜀 = 10 
and 𝜇 = 3 when 𝑛 = 40, 60 and 70, at 𝜀 = 10 and 𝜇 = 5 when 𝑛 = 30, 40 and 60, at 𝜀 = 20 and 
𝜇 = 3 when 𝑛 = 30, 40, 60 and 70 and 𝜀 = 20 and 𝜇 = 5 when 𝑛 = 20, 30 40, 60 and 70.  Equally, 
for MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test shaded in green, when 𝜀 = 0 and 10 and 𝜇 = 0, 3 and 5 only when 𝑛 =

 40 and 70, also, when 𝜀 = 20 and 𝜇 =  3 and 5 only when 𝑛 =   60. From the results, it shows that 
MLSEM-test is does not performed well, where 22 out of 30 conditions are non-robust. Besides, 
MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test is more robust compare to MLSEM-test and performed very well 23 out of 30 fall 

within the robust interval. 
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Table 3.1: Type I error rates for the corresponding 𝑝 = 15 

Sample 
Size (𝑛) 

% 
Outlier 
(𝜀) 

Mean 
Shift (𝜇) 

Robust Tests 
MLSEM MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

 

10 0 0 0.0502 0.05 
20   0.0542 0.0404 
30   0.0738 0.0454 
40   0.113 0.0578 
60   0.0578 0.0404 
70   0.0982 0.0494 

10 10 3 0.0502 0.0502 
20   0.058 0.0336 
30   0.1654 0.0276 
40   0.4024 0.0396 
60   0.0726 0.023 
70   0.3354 0.0232 

10 10 5 0.05 0.0502 
20   0.0608 0.0472 
30   0.1466 0.0532 
40   0.3248 0.0636 
60   0.0696 0.0492 
70   0.276 0.0636 

10 20 3 0.05 0.05 
20   0.0644 0.0476 
30   0.2134 0.0648 
40   0.4932 0.0868 
60   0.085 0.0464 
70   0.4346 0.082 

10 20 5 0.05 0.05 
20   0.0664 0.0476 
30   0.1948 0.0648 
40   0.4116 0.0868 
60   0.0766 0.0464 
70   0.353 0.082 

     14     24 

Shaded region indicate Type I error within [0.025- 0.075] 
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Table 3.2: Type I error rates for the corresponding 𝑝 = 18 

Sample 
Size (𝑛) 

% Outlier 
(𝜀) 

Mean 
Shift (𝜇) 

Robust Tests 
MLSEM MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

 

10 0 0  0.0502 
20   0.0502 0.0498 
30   0.0578 0.0658 
40   0.1286 0.0828 
60   0.263 0.0474 
70   0.0648 0.0838 

10 10 3  0.05 
20   0.0502 0.0434 
30   0.0702 0.061 
40   0.254 0.0838 
60   0.5556 0.0406 
70   0.0954 0.0828 

10 10 5  0.05 
20   0.0502 0.0448 
30   0.0642 0.0604 
40   0.1596 0.0826 
60   0.4008 0.0376 
70   0.0694 0.0768 

10 20 3  0.05 
20   0.05 0.0256 
30   0.0844 0.0322 
40   0.5322 0.0528 
60   0.8918 0.0122 
70   0.1616 0.0358 

10 20 5 0.05 0.0502 
20   0.0666 0.036 
30   0.294 0.0488 
40   0.6166 0.0682 
60   0.0984 0.0252 
70   0.5894 0.0612 

       8      23 

Shaded region indicate Type I error within [0.025- 0.075] 
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Type I Error for Middle Number of Variables (𝒑 = 𝟐𝟎 𝐚𝐧𝐝 𝟐𝟓) 
In Table 3.3 the Type I error rate of MLSEM and MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-tests are recorded. The overall results 

show that MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑
-test is more robust compared to MLSEM-test. The rate contamination 

cannot be computed when 𝑝 > 𝑛 cases.  All the values of Type I error rate of MLSEM-test fall within 
the interval [0.025, 0.075] in blue when 𝑝 = 20 and 𝑛 = 10, 20, 30, 40, 60 and 70, except for 
conditions when 𝜀 = 0 and 𝜇 = 0, 𝑛 = 40 and 60, at  𝜀 = 10 and 𝜇 = 3 when 𝑛 = 30, 60 and 70, at 
𝜀 = 10 and 𝜇 = 5 when 𝑛 = 30, 40 and 70, at 𝜀 = 20 and 𝜇 = 3 when 𝑛 =  40, 60 and 70 and 𝜀 =
20 and 𝜇 = 5 when 𝑛 = 30, 40,60 and 70. Likewise, for MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test shaded in green, when 

𝜀 = 0 and 10 and 𝜇 = 0, 3 and 5 only when 𝑛 =  40 and 70, also, when 𝜀 = 20 and 𝜇 =  3 and 5 
only when 𝑛 = 40 and 70. From the results, it shows that MLSEM-test is not well perform where 23 
out of 30 conditions are non-robust. Also, MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test is more robust compare to MLSEM-test 

and performed very well 22 out of 30 fall within the robust interval. In Table 3.4. The Type I error rate 
of MLSEM-test fall within the interval in blue when 𝑝 = 25, except for conditions when 𝜀 = 0 and 
𝜇 = 0, 𝑛 = 60 and 70, at  𝜀 = 10 and 𝜇 = 3 and 5  when 𝑛 = 40, 60 and 70, at 𝜀 = 20 and 𝜇 =
3 and 5, none of the 𝑛. Also, for MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test shaded in green colours, when 𝜀 = 0 and 10 and 

𝜇 = 0, 3 and 5 only when 𝑛 = 30, 40 and 70, also, when 𝜀 = 20 and 𝜇 =  3 and 5 only when 𝑛 =
40 and 70. From the results, it shows that MLSEM-test is not well performed where 4 out of 30 
conditions are non-robust. Also, MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test is more robust compare to MLSEM-test and 

perform very well 24 out of 30 fall within the robust interval. 
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Table 3.3: Type I error rates for the corresponding 𝑝 = 20 
Sample 
Size (𝑛) 

% Outlier 
(𝜀) 

Mean Shift 
(𝜇) 

Robust Tests 
MLSEM MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

 

10 0 0  0.0502 
20    0.0504 
30   0.0548 0.0712 
40   0.1438 0.0948 
60   0.2994 0.052 
70   0.0636 0.0976 

10 10 3  0.0502 
20    0.0466 
30   0.2994 0.0532 
40   0.0636 0.0734 
60   0.2544 0.0492 
70   0.4966 0.0662 

10 10 5  0.0502 
20    0.0496 
30   0.0622 0.068 
40   0.289 0.0928 
60   0.6072 0.0534 
70   0.0862 0.09 
10 20 3  0.05 
20    0.0364 
30   0.0502 0.0624 
40   0.1022 0.082 
60   0.6274 0.0308 
70   0.9306 0.0888 

10 20 5 0.05 0.0502 
20   0.0756 0.04 
30   0.4948 0.0592 
40   0.907 0.078 
60   0.1148 0.0328 
70   0.8584 0.0782 

       7     22 

Shaded region indicate Type I error within [0.025- 0.075] 
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Table 3.4: Type I error rates for the corresponding 𝑝 = 25 
Sample 
Size (𝑛) 

% Outlier 
(𝜀) 

Mean Shift 
(𝜇) 

Robust Tests 
MLSEM MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

 

10 0 0  0.05 
20    0.0564 
30   0.0502 0.0848 
40   0.0716 0.1002 
60   0.2668 0.0506 
70   0.53 0.1174 

10 10 3  0.05 
20    0.035 
30   0.0684 0.046 
40   0.3278 0.0712 
60   0.6438 0.0376 
70   0.1004 0.0604 

10 10 5  0.05 
20    0.035 
30   0.0684 0.046 
40   0.3278 0.0712 
60   0.6438 0.0376 
70   0.1004 0.0604 
10 20 3  0.0502 
20    0.0522 
30   0.2026 0.0722 
40   0.4796 0.1018 
60   0.0792 0.054 
70   0.417 0.0962 

10 20 5  0.0502 
20    0.0294 
30   0.661 0.0386 
40   0.9398 0.06 
60   0.22 0.0158 
70   0.9658 0.0616 

       4       24 

Shaded region indicate Type I error within [0.025- 0.075] 
 
Type I Error for Greater Number of Variables (𝒑 = 𝟑𝟎 𝐚𝐧𝐝 𝟓𝟎) 
In Table 3.5 the Type I error rate of MLSEM and MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-tests are recorded. The overall results 

show that MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑
-test is more robust compared to MLSEM-test. The rate contamination 

cannot be computed when 𝑝 > 𝑛 cases.  All the values of Type I error rate of MLSEM-test fall within 
the interval [0.025, 0.075] in blue when 𝑝 = 30 and 𝑛 = 10, 20, 30, 40, 60 and 70, except for 
conditions when 𝜀 = 0 and 𝜇 = 0, 𝑛 = 40 and 60, at  𝜀 = 10 and 𝜇 = 3 when 𝑛 = 40, 60 and 70, at 
𝜀 = 10 and 𝜇 = 5 when 𝑛 = 40, 60 and 70, at 𝜀 = 20 and 𝜇 = 3 when 𝑛 =  40, 60 and 70 and 𝜀 =
20 and 𝜇 = 5 when 𝑛 = 40, 60 and 70. Likewise, for MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test shaded in green, when 𝜀 =

0  and 𝜇 = 0,  when 𝑛 =  40 and 70, also, when 𝜀 = 10 and 𝜇 =  3 and 5 only when 𝑛 =
30, 40 and 70, when 𝜀 = 20  and 𝜇 = 3 and 5,  when 𝑛 =  30, 40 and 70,  From the results, it shows 
that MLSEM-test  performed worst where 29 out of 30 conditions are non-robust. Also, 
MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test is more robust compare to MLSEM-test and performed very well 19 out of 30 fall 

within the robust interval.  
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In Table 3.6. The Type I error rate of MLSEM-test fall within the interval in blue colour when 𝑝 = 50, 
all the conditions are not robust. Similarly, for MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test shaded in green, when 𝜀 = 0 and 

𝜇 = 0,  when 𝑛 = 30, 40 and 70, also, when 𝜀 = 10 and 𝜇 =  3 and 5 only when 𝑛 = 40 and 70, 
when 𝜀 = 20 and 𝜇 =  3 and 5 only when 𝑛 = 30, 40 and 70.  From the results, it shows that MLSEM-
test performed worst 30 out of 30 conditions are non-robust. Also, MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test is more robust 

compare to MLSEM-test and performed very well 19 out of 30 fall within the robust interval. 
 
Table 3.5: Type I error rates for the corresponding 𝑝 = 30 

Sample Size 
(𝑛) 

% Outlier (𝜀) Mean Shift 
(𝜇) 

Robust Tests 
MLSEM MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

 

10 0 0  0.05 
20    0.046 
30    0.072 
40   0.0646 0.0912 
60   0.3102 0.0468 
70   0.5728 0.1046 

10 10 3  0.05 
20    0.0452 
30    0.0786 
40   0.5256 0.091 
60   0.0896 0.045 
70   0.5256 0.1204 

10 10 5  0.05 
20    0.033 
30    0.0646 
40   0.0896 0.075 
60   0.5256 0.0278 
70   0.8006 0.0964 

10 20 3  0.0502 
20    0.0444 
30    0.0808 
40   0.6796 0.0922 
60   0.905 0.0392 
70   0.2632 0.1138 

10 20 5  0.05 
20    0.0276 
30    0.055 
40   0.978 0.0706 
60   0.999 0.0164 
70   0.7322 0.0844 

       1     19 

Shaded region indicate Type I error within [0.025- 0.075] 
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Table 3.6: Type I error rates for the corresponding 𝑝 = 50 
Sample Size 
(𝑛) 

% Outlier (𝜀) Mean Shift 
(𝜇) 

Robust Tests 
MLSEM MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

 

10 0 0  0.05 
20    0.0424 
30    0.0804 
40    0.0922 
60   0.7068 0.0398 
70   0.9218 0.126 

10 10 3  0.0502 
20    0.0304 
30    0.0596 
40    0,0728 
60   0.259 0.0254 
70   0.9818 0.1066 

10 10 5  0.0502 
20    0.0494 
30    0.0614 
40    0.0868 
60   0.5792 0.054 
70   0.9238 0.0802 

10 20 3  0.05 
20    0.0406 
30    0.077 
40    0.0868 
60   0.8706 0.0364 
70   0.9824 0.124 

10 20 5  0.05 
20    0.0396 
30    0.0724 
40    0.0852 
60   0.8706 0.0338 
70   0.9824 0.12 

        0      19 

Shaded region indicate Type I error within [0.025- 0.075] 
 
In conclusion, there are 60 conditions involved in evaluating the robustness of test for minor number 
of variables (𝑝 = 15 and 18). There are 22 out 60 conditions of MLSEM-test, and 47 condition of 
MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test fall within the robust interval. When, 𝑝 = 15, there are 14 out 30 and 𝑝 = 18, 

also 8 out 30 of  MLSEM-test, and 24 out of 30 and 23 out of 30 MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑
-test  respectively that 

fall within the interval. Likewise, when (𝑝 = 20 and 25). There are 11 out 60 conditions of MLSEM-
test, and 46 condition of MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test and for, 𝑝 = 20, there are 7 out 30 and 𝑝 = 25, there 

are 4 out 30 of  MLSEM-test, and , 𝑝 = 20, there are 22 out 30 and 𝑝 = 25, there are 24 out 30 of 
MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test fall within the robust interval. When (𝑝 = 30 and 50). There are 1 out 60 

conditions of MLSEM-test, and 38 condition of MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑
-test and for, 𝑝 = 30, there are 1 out 

30 and 𝑝 = 50,  none of  MLSEM-test, and , 𝑝 = 30, there are 19 out 30 and 𝑝 = 50, there are 19 out 
30 of MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test fall within the robust interval. 

In general we derive the new statistical robust estimator using the Weiszfeld’s algorithm covariance 
matrix to resolve the outliers’ problem in high dimensional data sets. The robust estimator can 
computed the results based on when 𝑝 > 𝑛 with MLSEM𝑊𝑒𝑖𝑠𝑧𝑓𝑒𝑙𝑑

-test in structural equation 

modelling. 
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