
 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

247 www.hrmars.com/journals

A Low-Order Knowledge-Based Algorithm (LOKBA)
to Solve Binary Integer Programming Problems

S. H. Pakzad-Moghadam

MSc student, University of Tehran, Industrial Engineering Department

E.mail: hojatpakzad@gmail.com

M. S. Shahmohammadi
BSc student, University of Tehran, Industrial Engineering Dept,

E.mail: sadegh_shahmohammadi@yahoo.com

R. Ghodsi
Assistant Professor, University of Tehran, Industrial Engineering Dept,

E.mail: ghodsi@ut.ac.ir

Abstract
In this paper a novel and very fast low order knowledge-based algorithm (called LOKBA)
is presented to solve binary integer programming (BIP) problems. The factors in the
objective function and the constraints of any BIP problem contains specific knowledge
and information that can be used to better search the solution space of the problem. In
this work many new definitions are introduced to elaborate on this information and
extract necessary knowledge for creating and improving solutions. Found solutions are
improved further and further until there is no new knowledge that can be extracted and
there are no more possible improvements. The proposed algorithm has many major
credentials. It produces promising results within amazingly short run times even for very
large problems such as problems with one million variables. Also, it is extendable to
solve integer programming and binary quadratic programming problems. Furthermore,
it can be combined with heuristic or meta heuristic algorithms.

Keywords: Binary Integer Programming, Combinatorial Optimization, Rule-based
Algorithm, Mathematical Programming, Mixed Integer Programming

1. Introduction
Binary integer programming (BIP) problems are a subset of Mixed Integer Programming
(MIP) problems. Since there exist many practical applications such as distribution
networks, scheduling in airline and other transportation industries, capital budgeting,
telecommunications, sequencing and selection decisions, many researches focus on BIP

mailto:hojatpakzad@gmail.com
mailto:sadegh_shahmohammadi@yahoo.com
mailto:ghodsi@ut.ac.ir

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

248 www.hrmars.com/journals

specifically as a major subset of MIP. The general BIP problem can be formulated as
below:

Max cx
Subjected to Ax ≤ b

x ε {0, 1}n

where A is an m by n matrix, c is an n-dimensional row vector, b an m-dimensional
column vector, and x is an n-dimensional column vector of variables or unknowns. All
integer programming problems are known to be NP-hard and difficult to solve and have
long been an important research area (Wang and Xing, 2009) (Wolsey, 1998). Kellerer et
al (2004) have provided a full-scale presentation of all methods available for the
solution of the Knapsack problem as a BIP problem in their book (Kellerer et al., 2004).
Because large size NP-hard problems are not amenable to solution by exact methods,
generally heuristic algorithms are used to solve integer programming problems have
been solved by different exact and heuristic methods. Exact methods include branch
and bound, dynamic programming, Lagrangian relaxation based methods and integer
programming based methods such as branch and cut, branch and price, and branch and
cut and price (Nemhauser and Wolsey, 1988). Heuristics include simulated annealing
(Kirkpatrick et al., 1983), tabu search (Glover and Laguna, 1997), population-based
models such as evolutionary algorithms (Baeck et al., 1997), scatter search (Glover et al.,
2000), memetic algorithm (Moscato and Cotta, 2003), various estimation of distribution
algorithms (Larranaga and Lozano, 2001), etc. There are also many attempts that
combine exact and heuristic methods (Domitrescu and Stuetzle, 2003). Some recent
improvements in heuristics are Local Branching (LB) (Fischetti and Lodi, 2003), Variable
Neighborhood Search and Local Branching (VNSB) (Hansen et al., 2006), Variable
Neighborhood Decomposition search for 0-1 Mixed Integer Programs (VNDS) (Lazic et
al., 2009), Relaxation Induced Neighborhood Search (RINS) (Danna et al., 2005) and
Distance Induced Neighborhood Search (DINS) (Ghosh, 2007). Namazifar and Miller
(2008) presented a framework called macro partitioning (PMaP) for solving MIP
problems in parallel (Namazifar and Miller, 2008). Chu and Beasley (1998) have
developed a genetic algorithm for the multidimensional knapsack problem (Chu and
Beasley, 1998). Captivo et al. (2003) have used a labeling algorithm to solve bi-criteria
zero-one Knapsack problems (Captivo et al., 2003). General BIP problems include both
negative and non-negative coefficients. A lot of research work exists on Knapsack
problems or problems with non-negative coefficients. Fortin and Tseveendorj (2009)
presented a branch and bound procedure based on empirical distribution of each
variable under the linear relaxation model (Fortin and Tseveendorj, 2009). Vasquez and
Hao (2001) developed a hybrid approach for the zero-one multidimensional Knapsack
problem and stated that most efficient algorithms rely on linear relaxation bounds
coupled with extra constraints (Vasquez and Hao, 2001). Haartman et al. (2008) find
approximate solutions to BIP problems using continualization techniques (Haartman et
al., 2008). Their new algorithm constructs a sequence of approximations to a solution
using a meta-control approach that calculates the least squares of the errors.

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

249 www.hrmars.com/journals

In the work at hand, both negative and non-negative coefficients are considered and
none of the constraints is relaxed. The proposed algorithm considers both the objective
and the constraints simultaneously and finds the solution very fast after some iteration.
In each of the iterations the variables and constraints of the problem are inspected to
draw knowledge and some of them are distinguished as “firm” or “strong” variables and
“obsolete” constraints. The novel part of the algorithm is the drawing knowledge from
the variables and constraint factors that is called “standardization” in this work. Based
on that knowledge it then classifies the constraints and variables as mentioned in an
innovative manner. Next the constraints and variables are weighted using a specific
weighting scheme. Using these weights, the values for a few of the variables are
specified and a smaller problem is then formed. Then the variables and constraints are
re-inspected and new weights are calculated. In each of these steps, a few more of the
variables are specified until all variables are known and the algorithm terminates. The
algorithm is explained in detail in the next section. The validation of the algorithm is
done through solving many different sample problems. The results were very promising
and the optimum or good solutions were found in very short run time even for large size
problems. For example, in a problem with 10,000 variables the optimum solution was
found in less than 4 seconds for a normal PC.
The novel algorithm presented here called Low Order Knowledge-Based Algorithm
(LOKBA) is capable of solving small to large size problems that might be impossible or
too complicated to be solved by other methods. Also, it should be noted that many
previous works such as DINS, RINS, and LB are reported for problems of smaller size
than the sizes that are tested in this work. Hence, there is a potential for future research
to combine such approaches with the algorithm presented here. A very good initial
solution within a very short time even for problems of one million variables can be
produced with the proposed algorithm and then be improved further by methods such
as DINS. Also, combination of exact methods with the algorithm appears to be a possible
technique to reduce the problem complexity. For example, the branch & bound’s lower
bound could be improved surprisingly if the value of the final solution of this algorithm
is used as the lower bound.

2. LOKBA Algorithm

Prior to presenting the steps of the proposed algorithm in the work at hand it is
necessary to first define some terms and concepts specific to this algorithm. These
terms are explained in section 3.1 and then the algorithm is given in section3.2.

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

250 www.hrmars.com/journals

2.1. Definitions
Complement of a variable
The “complement” of a variable as such that

 (1)

Complement-constraints

Consider the following BIP sample problem:
Min z= x1-2x2-9x3+0x4+3x5+0x6+8x7-5x8

Subjected to:
-x1-x2-x3+x4-x5-x6-x7-x8 <=-2

-3x1+1x2-2x3+1x4+6x5+0x6+5x7-x8 >= 9
+2x1+x2+2x3+0x4+9x5-3x6-3x7+x8 >= 7

For each constraint, a new constraint can be formed using the complement variable.
These constraints will be called “complement-constraints” from this point forward. For
example, the second constraint in the above sample problem can be transformed to its
complement-constraint as follows:

-3x1+1x2-2x3+1x4+6x5+0x6+5x7-x8 >= 9
&

-3(x1 +y1) +1(x2 +y2) -2(x3 +y3) +1(x4 +y4) +6(x5 +y5) +0(x6 +y6) +5(x7 +y7) -1(x8 +y8) = 7
So the complement constraint will be:
-3y1+1y2-2y3+1y4+6y5+0y6+5y7-y8 =< -2

Where .

Superior versus inferior constraints

As shown above, in each pair of a constraint and its complement-constraint, one has
greater-equal sign and the other smaller-equal sign. From this point forward, the
constraint with greater-equal sign is called superior constraint and represented with a C
symbol. Likewise, the smaller-equal constraint is called inferior constraint and
represented with a Ø.

Standard problem

In this work, a problem is defined as “standard problem” when:
1. The objective is maximization.
2. The signs of all constraints and complement-constraints must be either greater-equal or

smaller-equal.
3. All factors in the objective function and the constraints are positive integers.

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

251 www.hrmars.com/journals

All BIP problems can be transformed into a standard problem. The objective function of
a minimization problem is multiplied by -1 to form a maximization problem. For a
constraint with greater sign, a value 1 is added to the right hand side (RHS) and the sign
is then changed into greater-equal. Likewise, for a constraint with smaller sign, a value 1
is subtracted from the RHS and the sign is then changed into smaller-equal. Wherever a
non-integer factor exists for a variable in the objective function or in a constraint, that
objective function or that constraint can be multiplied to an appropriate number to
satisfy the integer requirement. Also, for variables with negative factor, whether in a
constraint or in the objective function, the complement of that variable is used. This is
shown in the following standardization example.

In the first step, a maximization problem is formed:

Max z = -x1+2x2+9x3+0x4-3x5+0x6-8x7+5x8
To have positive-sign factors only:

Max z = y1+2x2+9x3+0x4+3y5+0x6+8y7+5x8-12

The equivalent for the objective function will be:
Max z = y1+2x2+9x3+0x4+3y5+0x6+8y7+5x8

The constraints are changed to:

y1+y2+y3+x4+y5+y6+y7+y8<= 5
3y1+1x2+2y3+1x4+6x5+0x6+5x7+y8>= 15
2x1+x2+2x3+0x4+9x5+3y6+3y7+x8>= 13

Now the complement-constraints are formed:

x1+x2+x3+y4+x5+x6+x7+x8>= 3
3x1+1y2+2x3+1y4+6y5+0y6+5y7+x8<= 4
2y1+y2+2y3+0y4+9y5+3x6+3x7+y8 <= 8

Finally the standard form of the example is this:

Max z = y1+2x2+9x3+0x4+3y5+0x6+8y7+5x8
Superior constraints: Inferior constraints:
x1+x2+x3+y4+x5+x6+x7+x8>= 3 y1+y2+y3+x4+y5+y6+y7+y8<=5

3y1+1x2+2y3+1x4+6x5+0x6+5x7+y8>= 15 3x1+1y2+2x3+1y4+6y5+0y6+5y7+x8<=4
2x1+x2+2x3+0x4+9x5+3y6+3y7+x8 >=13 2y1+y2+2y3+0y4+9y5+3x6+3x7+y8<= 8

Where .

Weight assignment

Obviously in the above example, the eight variables (x1,x2,x3,x4,x5,x6,x7,x8 or y1,y2, y3, y4,
y5, y6, y7,y8) can take each one of the two 0 or 1 values and therefore the problem has 28
= 256 alternatives. Testing all alternatives to find the optimum for even a normal size
problem is computationally expensive. In the exact solution approaches such as Branch-

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

252 www.hrmars.com/journals

and-Bound (B&B) the variables are prioritized in the ascending order of their factors in
the objective function only and their effects in satisfying the constraints are ignored.
Therefore, it frequently happens that a variable is assigned as 1 too early although in the
optimum solution that variable must be 0. Hence, too many alternatives might be tested
to correct the value for this variable in order to find the optimum solution. Furthermore
to ensure and verify the optimality, even when the optimum is found in the early steps,
still too many alternatives are often tested. To reduce the number of alternatives, in
addition to the factors of variables in the objective function, the role of variables in
satisfying the constraints has to be considered as well. Lots of effort in the work at hand
was dedicated to consider the role of the variables in the constraints and based on the
results the following approach is chosen.

Determining the Coefficient of Constraints (CoC)

Each constraint represents a set of acceptable solutions and it seems a valid claim to say
that typically a constraint with smaller set has a higher influence on region for the
optimum solution and thus it has to have a higher effect coefficient. The solutions for
the inferior and superior constraints are corresponding to one another and
consequently the numbers of elements in both sets are equal (n(C) = n(Ø)). Using the
above explanations, it can be stated that the effect of a constraint and its complement-
constraint are equal or in other words each superior constraint and its corresponding
inferior constraint have similar influence on the region for the optimum solution.
Because all variables and their complements can have a binary (0 or 1) value, the
phrases “x1+x2+x3+y4+x5+x6+x7+x8>= 3” or “y1+y2+y3+x4+y5+y6+y7+y8<= 5” in the above
example will have a value between 0 to 8. The RHS of a superior constraint after
standardization is shown by P and the RHS of the inferior constraint after
standardization is shown by S. It is obvious that increasing P or decreasing S each will
reduce the size of sets C and Ø accordingly and consequently it increases the effect of
that constraint. Once the P for all constraints (The vector of P) are non-positive then the
problem is fully feasible. On the other hand, if one element of the vector S is negative,
then the problem is infeasible. There will be no such case that the last 2 statements (All
P’s non-positive and at least one S negative) occur simultaneously. This is because P+S is
the sum of the factors in the constraints and is non-negative always.

Hence, CoC is defined as:

(2)

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

253 www.hrmars.com/journals

Determining the Effect Coefficient for each variable (SNCoV, SPCoV)
Considering a standard problem, the superior constraints can be written in the general
form as:

(3)

and the inferior constraints can also be written in the following general form:

(4)

Clearly:

(5)

On the other hand, the effect of kth variable in satisfying the constraints can be

represented by (Note that all variables are binary) which is the same as

.

Variables can take a value 0 or 1, each value results in a different effect on the
constraints. To analyze the amount of influence of each variable in the constraints, two
new coefficients are defined here. In a standard problem considering all variables in the
objective function, SPCoV is defined below such that it illustrates the effect of each
variable once given a value 1. Similarly, SNCoV is defined such that it illustrates the
effects of each variable once given a value 0. Thus, having m constraints and n variables
these coefficients are defined as:

(6)

(7)

Note that:

(8)

Normalization of objective function factors
To normalize the objective function factors, their absolute value of each is divided to the
sum of all their absolute values. Evidently, the total of all normalized factors equals one.

Normalization of SPCoV and SNCoV coefficients

Although usually to normalize a series of values they are divided to their total such that
the sum of normalized values is 1, here another approach is used. In the solution

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

254 www.hrmars.com/journals

algorithm presented in this work, the SPCoV and SNCoV coefficients relate to the
feasibility of the problem since they are formed based on the constraints. Thus, when in
a problem the importance of feasibility is higher than its optimality, these feasibility
coefficients (i.e., all SPCoV’s and SNCoV’s) have to have higher effect than the objective
function factors. This means when the difficulty of the constraints increases (the
feasibility will reduce and therefore its importance will increase), then the sum of all
feasibility coefficients must also increase in comparison to the normalized factors of the
objective function. For this purpose, to normalize the feasibility coefficients (Instead of
dividing to their total), they are divided to the number of constraints (m). The result can
be larger than one, whereas the sum of normalized objective function factors is always
one.

Difficulty coefficient of the sum of all constraints =

(9)

Determining Final Coefficient (FCo) for each variable

It should be noted that using constraints alone to prioritize variables in taking value
does not provide a comprehensive solution strategy. This is similar to considering the
ascending order of the objective function factors for variables in the Branch and Bound
approach that sometimes leads to a prolonged or too extensive search. Therefore, a
more reliable approach is to use both the factors of the constraints and the factors of
the objective function. Prior to explaining how to use both of these factors, it should be
pointed out here that normally the two following approaches exist for solving binary
problems:

1- The general approach considers both the feasibility and the optimality of the
solution. Here it is tried to find the feasible solution close to optimum as much as
possible.

2- The particular approach considers the feasibility of the solution only. This
approach is used when the solution space is significantly small and finding a feasible
solution is vital. Here the probability of finding a feasible solution is greater compared to
the general approach as the focus is on feasibility only. Obviously an optimum but non-
feasible solution is of no use. Hence, in the algorithm presented in this work the general
approach is employed first and after several iterations to get closer to optimum the
solution space shrinks and becomes smaller. Next whenever finding a better feasible
solution through general approach is not possible, the particular approach is employed.
In the general approach both of the above mentioned factors (constraints and objective
function) are used simultaneously in the manner that follows. Once a variable is 1, then
clearly the objective function increment is the value of its factor in that function.
Furthermore, the constraints are satisfied in the amount of its SPCoV. On the other
hand, once a variable is 0, the objective function does not change and the constraints
are then satisfied in the amount of SNCoV. Therefore, a new coefficient can be defined

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

255 www.hrmars.com/journals

for each variable by adding SPCoV to the normalized factor of that variable in the
objective function and then dividing them to SNCoV.

 FCo() = (10)

In the particular approach the objective function factors are neglected and therefore

FCo is calculated as below:

(11)

Once a variable has an FCo greater than 1 it has a high merit to take the value 1 with the
variable with highest FCo having the highest merit. On the other hand a variable with
FCo smaller-equal 1 has a high merit to become 0 with the variable with the smallest
FCo having the highest merit to become zero. The details of how to use FCo will be
explained later in the proposed algorithm.

Strong variable

In the Branch and Bound approach many branches and sub-branches are created and
then while using the feasibility test, it can be observed that some of the variables have
to be fixed to a special value. In the proposed algorithm in this work, this fact is
discovered earlier in higher level branches and the feasibility tests in lower levels are
skipped. This is done through defining strong variables. In the proposed work during the
iterations of the algorithm variables are gradually assigned 0 or 1 values and
consequently the RHS of the constraints are decreased accordingly. Whenever in an
inferior constraint the factor of a variable is greater than the RHS of that constraint,
then that variable is considered strong and is assigned to zero. This is because inferior
constraints have smaller-equal sign and all variables have non-negative factors in a
standard problem. Therefore, if the factor of a variable is greater than the RHS and if
assigned to 1, then obviously the result of multiplying the factor to 1 violates the
constraint.
The assigned value for the strong variables is fixed contrary to the other variables that
take a value based on the weighting scheme.

Firm variables

Once the vector of factors for a variables in all of the superior constraints of a standard
problem is greater-equal zero, then SNCoV=0 and that variable is firm and will be
assigned to 1. This definition for firm variable is once the general approach is employed.
For the particular approach in addition to those firm variables with SNCoV=0 (which are

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

256 www.hrmars.com/journals

assigned to 1) also the variables with SPCoV=0 are considered as firm which will be
assigned to 0.

Obsolete constraints
As mentioned earlier, in the proposed algorithm variables (like strong or firm) are
gradually assigned values during the iterations of the algorithm. This value for each
variable is multiplied to its factor in each constraint and then deducted from the RHS.
And at some point the RHS of the superior constraints will become zero or negative. A
superior constraint has greater-equal sign and a standard problem has non-negative
factors only. Thus, a zero or negative RHS means that the remaining variables can take
any value and the constraint will be true anyways. Hence, this constraint and its
complement become obsolete.

2.2. The algorithm steps
The algorithm works on the concept of finding a solution and if possible improving this
solution further by adding extra constraints. To find a solution in each step, knowledge
is extracted from the values of the factors in the objective function and the constraints.
This knowledge is then processed further in a loop called “improvement loop” to create
smaller problems intelligently. Next the knowledge is also used in a different manner to
assign weights to the constraints and the variables. Based on the weighting scheme, the
variables are assigned values. From the assigned values, a new knowledge is extracted.
This new knowledge upgrades the previous knowledge and the algorithm uses this as a
feedback for future improvement. The algorithm stops with the best solution found so
far once there can be no further improvements.
The procedure of the algorithm is such that it produces a better solution in each of the
iterations while using all of the knowledge that can be extracted from the problem
factors to improve the solutions. Therefore, it can be expected from the algorithm to
produce promising results. This is proven by the results that are discussed later.
The algorithm is described in the following steps and the flowchart of the algorithm is
presented in figure 1. For the example of each step, please refer to the comprehensive
example given at the end of this paper in the appendix. The algorithm has an
initialization step where it is transformed into a standard problem. The solution
approach can also be explained using a table. The table is introduced for the simplicity
and better understanding of the algorithm. Consider a BIP problem with n variables and
m constraints.

1. The objective function has to be of maximization type (Max-type). So if the
objective of BIP is minimization, multiply the objective to -1. Then, the first n
elements in the first row of the table are the signs of the objective function
factors, each is written in one column (from column 1 to n) accordingly.

2. The second row of the table is devoted to variables. This means that the second
row is filled with x’s and y’s with index 1 for the first column, index 2 for the
second column, index 3 for third column and so on till the nth column. In each
column if the first row has a positive sign, then variable xj is used and otherwise

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

257 www.hrmars.com/journals

(negative sign) yj is used where j = 1 to n. It should be noted that this way of
filling the table is towards the standardization of the problem.

3. The third row of the table (from column 1 to column n) is filled with the absolute
values of the objective function factors.

4. Constraints will be written from the 4th row onwards with one row for each
constraint in a manner that will follow (Up to now there are m+3 rows). First all
of the constraints have to be transformed to greater-equal or smaller-equal type
by the technique explained in standardization of the problem. For each
constraint of the problem before standardization that have greater-equal sign, a
positive sign must be written in the n+1 column of the row specific to that
constraint. Similarly, for smaller-equal constraints a negative sign is written. The
factors of variables in each constraint will then be multiplied to this sign (written
in (n+1)th column) and also multiplied to the sign written in the first row of the
table of the column.

5. According to that variable. The resulting values will be written in the row for that
constraint from column 1 to n.

6. In the same row for a constraint, P is written in the column n+2 and S is written
in column n+3. P and S are calculated as below.

When the sign in column n+1 is positive, then:

P = RHS – (The sum of negative factors in the constraints prior to
standardization)

(12)

S = (The sum of positive factors in the constraints prior to
standardization) – RHS

(13)

When the sign in column n+1 is negative, then:

P = (The sum of positive factors in the constraints prior to
standardization) – RHS

(14)

S = RHS – (The sum of negative factors in the constraints prior to
standardization)

(15)

It should be noted that:

 P+S = Sum of the absolute values of the factors of the constraint (16)

The primary table, which basically is the initialization section of the algorithm, is
now ready. Also consider the general approach.

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

258 www.hrmars.com/journals

Fig1 The flowchart of the algorithm

7. Now the improvement loop:

- If there is a constraint with negative S, then go to step 18.

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

259 www.hrmars.com/journals

- Find the strong and firm variables and the obsolete constraints.
- Assign the values of the strong and firm variables and omit the obsolete

constraints (if any exist)
- Update the P and S values for the new problem (Note that the rest of the table

does not change). The updating is in this form:
When a variable is assigned to 1, the positive factors are deducted from its P and
the negative factors are added to its S. When a variable is assigned to 0, the
positive factors are deducted from its S and the negative factors are added to its
P.

- Loop back to find again the strong and firm variables and obsolete constraints
until there are no more such variables and constraints. It is needed to loop back
because after each iteration of this loop the new setting of the problem might
result in creating the possibility of finding further strong or firm variables and
obsolete constraints. Thus, once the loop ends it is certain that all the leftover
variables and constraints need another approach for being evaluated. This is
done through the weighting scheme below. All the values given to the specified
variables in this step must be written in row m+10. The values for remaining
variables (empty columns of this row) will be filled in step 12 after weighting
steps.

8. Beginning of the weighting scheme starts here with calculating the CoC of each
constraint divided to (P+S) of that constraint and writing the result in (n+4)th
column in the row for that constraint.

9. In this step the row m+4 will be filled from column 1 to n. For each variable (i.e.,
for each column) the sum of the product of the positive factors written in step 4
for that variable and the number calculated in the previous step for each
constraint will be written in row m+4 in the same column. This value is SPCoV of
the variable according to that column. Similarly, the sum of the product of the
negative factors written in step 4 for each variable and the number calculated in
the previous step for each constraint will be written in row m+5 in the same
column. This is SNCoV of the associated variable.

10. Rows m+6 and m+7 are the normalized values of the two previous rows
accordingly.

11. Row m+8 is the normalized values of the objective function factors (row 3).
12. FCo is now calculated for variables that have not been given any value up to now

and written in row m+9. Weighting is now completed.
13. Using the FCo weights of the previous step, the associated variables are assigned

0 or 1 value according to the criteria that those with FCo greater than 1 are given
value 1 and those smaller-equal 1 are given the value 0. This is a solution created
for the BIP problem and is called the “base solution” hereafter and this base
solution will fill the blank elements of row m+10. If only one variable is given a
value in this step, then update the problem (P and S) similar to step 6 and go to
step 17. Otherwise continue.

14. The feasibility of the solution is tested at this step. If yes, go to next step (Yes-
Loop). Otherwise go to step 16 (No-Loop).

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

260 www.hrmars.com/journals

15. Yes-Loop is to improve the found feasible solution as much as possible. In this
loop we put aside all those variables with value 1 and update the problem using
these values. The approach of updating is the same as explained in step 6.
Therefore, the number of variables of this sub-problem is the number of
variables with value zero prior to this step (It has less than n variables). All the
variables with value 1 are omitted from the objective function to form the new
objective function. Also an additional constraint is added to the sub-problem.
This constraint is as follows:

New objective function ≥ The maximum of {1 & the factor of the
new objective function with minimum value}

(17)

This sub-problem is now solved by going to the step 6.
The yes-loop continues till the last sub-problem is infeasible.

16. Now that the solution has been improved. Note that the improved solution has n
variables. The objective function value is then calculated for this improved
solution and a new problem is formed by adding this constraint:

Objective function ≥ 1+ Objective function value for the improved
solution

(18)

To escape from local optimum the two following constraints are also added that
forces to find a new solution if possible.

The sum of all variables that had value 1 ≤ (the number of these
variables -1)

(19)

The sum of all variables that had value 0 ≥ 1

(20)

With this new problem go to step 6. This forces the quest for better solution to
continue till at some level, the algorithm stops due to infeasibility.

17. No-Loop starts here. First reverse the step 12 as if it just past step 11. Find the
max and min of FCo’s calculated in step 11. If the product of this max and min is
greater than 1 then assign the value 1 to the variable that has this max FCo.
Otherwise, assign 0 to the variable with min FCo. Update P and S in the same
way that was stated in step 6. Take this new problem and go to step 6.

18. Feasibility test. If feasible, go to step 14. Otherwise continue.
19. Check to see whether the general or the particular approach is used. If the

approach is general currently, then change to particular approach and go to step
6. Otherwise (particular approach), the last found solution is the final solution.

3. Results
The algorithm is tested in various manners using a normal PC. First, the updated MIPLIB
3.0 which is the famous Mixed Integer Programming Library is used
(http://miplib.zib.de/miplib2003.php). To compare LOKBA with other recent Algorithms
(Default Cplex, LB, RINS, DINS, VNDS and VNSB), only the results of problems solved by

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

261 www.hrmars.com/journals

other algorithms are reported here. Table 1 illustrates the results of LOKBA in column 6
for the eight problems given in the first column. The results of other algorithms (Default
Cplex, LB, RINS and DINS) reported in (Ghosh, 2007) are shown in columns 2 to 5 for
comparison. The run time for LOKBA on a normal PC (2.0 GHz Intel) is given in column 7.
It should be noted that the run time for all other algorithms for all eight problems is one
CPU-hour on a 2403 MHz AMD Athlon processor. The speed of LOKBA is much more
with results not too far from the others.
Table 1: Optimality and running time comparison

Problem
Name

Default
Cplex

LB RINS DINS LOKBA LOKBA Run Time
(Sec)

seymour 0.995 0.995 1.000 0.998 1.000 107.096

sp97ar 0.996 0.995 0.997 1.000 0.936 246.563

sp97ic 0.992 0.994 0.994 1.000 0.943 215.291

sp98ar 0.998 0.999 0.998 0.998 0.964 110.834

sp98ic 0.997 0.999 0.998 0.999 0.957 133.480

fast0507 1.000 0.994 0.994 1.000 0.992 1476.107

harp2 1.000 1.000 1.000 1.000 1.000 75.329

t1717 0.921 0.981 0.940 0.921 0.952 1733.008

ds 0.888 0.857 0.888 0.939 0.843 1558.748

To further verify the algorithm and compare with other recent works, the optimality and
running time of LOKBA is compared to VNSB and VNDS that are two recent methods for
0-1 programming. Table 2 reports the results of the algorithms and their run times in
seconds. It also illustrates that LOKBA has great speed with very good solutions.
Table 2: Optimality and running time comparison

Proble
m
Name

VNDS VNDS
Run
Time
(Sec)

VNSB VNSB
Run
Time
(Sec)

LOKBA LOKBA Run
Time (Sec)

seymou
r

0.995 9151 1.000 15995 1.000 107.096

sp97ar 1.000 16933 0.999 5614 0.986 246.563

sp97ic 0.991 2014 1.000 7844 0.993 215.291

sp98ar 0.999 7173 1.000 6337 0.994 110.834

sp98ic 1.000 2724 1.000 4993 0.997 133.480

The LOKBA algorithm is also tested using some sample problems taken from the OR
library website (http://people.brunel.ac.uk/~mastjjb/jeb/info.html). The results are
shown in table 3. The size of these sample problems were ranging from problems with
100 variables and 15 constraints to problems with 2500 variables and 100 constraints.
The run times of the algorithm range from 0.01 to 14 seconds. The maximum deviation
from the given solution was 1.3 percent and the average deviation was 0.4 percent.

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

262 www.hrmars.com/journals

Table 3: The results for 10 problems from OR library

n-m Optimum LOKBA Run Time Ratio

100-15 3766 3766 0.011 1.000
150-25 5650 5650 1.479 1.000
150-50 5764 5693 0.024 0.988
200-25 7557 7494 0.114 0.992
200-50 7672 7571 0.034 0.987
500-25 19215 19215 0.089 1.000
500-50 18801 18671 0.152 0.993
1500-25 58085 58085 3.339 1.000
1500-50 57292 57110 4.987 0.997
2500-
100

95231 94896 14.096 0.996

In order to analyze the sensitivity of the algorithm to the increase of the number of
variables and constraints a graph is shown in Figure 2. After applying regression method
on the results shown in table 3, the run time (which represents algorithm’s order) can
be approximated as a function of the number of constraints multiplied to the square of
the number of variables (mn2). The approximation using the correlation coefficient is R2
= 94.11 %.

Fig 2: The relationship between run time and mn2 for OR library 10 sample problems

Next, as another way of testing the proposed algorithm, the results of the algorithm by
Fortin and Tseveendorj (Fortin and Tseveendorj, 2009) are also used. All of their sample
problems have 500 variables and 30 constraints. They have not provided the run times
of their approach. The deviation of LOKBA from their results is 1.5 percent with run
times of about 1 second.

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

263 www.hrmars.com/journals

In addition, several BIP problems of small to large size (up to 1,000,000 variables) with
known optimal solutions are generated and tested. The algorithm produces the optimal
solution in all of these cases. The results are shown in table 4. The run times are again
surprisingly low. The running time for the problem with 1,000,000 variables was less
than 8.5 hours; for the problem with 10,000 variables was less than 4 seconds and for
smaller problems was even a fraction of a second.

Table 4: The results for 5 large size instances

n-m
Optimum
solution

Solution by
the algorithm

LOKBA Run
Time (Sec)

10000-1 9500500 9500500 3.434

50000-1 49500500 49500500 63.674

100000-1 99500500 99500500 297.571

500000-1 499500500 499500500 8104.330

1000000-1 1998001000 1998001000 30337.295

Although, in this step many different BIP problems were tested, a set of problems with
similar structures were used in order to analyze the sensitivity of the algorithm when
the number of variables is growing. Using the data of table 4, figure 3 demonstrates
similar behavior shown in figure 2 with an even better approximation. Hence, it is
predictable that the relationship will be the same for any other binary problems.
Therefore, the low sensitivity of the presented approach to the size of the problem in
comparison to the other approaches make this approach suitable for solving extra-large
problems.

Fig 3: The relationship between run time and mn2 for above large size samples

4. Conclusion and future works
There are definitely some information and knowledge embedded in the factors of the
constraints and the objective function of any binary integer programming problem. This

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

264 www.hrmars.com/journals

knowledge, if extracted and implemented intelligently, can help in finding the optimal
solution. In this work, this is attempted and a novel algorithm is developed that uses this
knowledge in many different levels. The knowledge is employed to form a so-called
novel “standard” problem and then the variables and constraints are then classified in
an innovative manner. Next the constraints and variables are weighted. The solutions
are improved towards optimum in several iterations. In these iterations the variables
are assigned values and new knowledge is created again that finally results in an optimal
or near optimal solution within a short amount of time. The efficiency of the algorithm is
tested using many different BIP problems. The algorithm produces optimal or near
optimal solutions in all test cases.
Due to the optimality of the numerous results acquired in amazingly short run times, the
algorithm is promising. It has the ability to solve any type of BIP problems (whether they
encompass either positive or negative factors or both of them and without any
limitation for the number of constraints) with low sensitivity to the size of the problem.
Based on these characteristics, there is high potential for extending this approach by
combining it with other methods. For example, it can be combined with many previous
works such as DINS, RINS, LB, VNSB and VNDS that are used for problems with much less
variables in comparison to the problems tested in this work. The proposed algorithm
can provide an initial solution for a very large problem with satisfactory gap from the
optimum in a short time. Then, the other methods can improve the solution and
decrease the gap. However, it should be noted that a solution with some gap for a real
world huge commercial problems which normally have a considerable amount of
uncertainty might be satisfactory. Instead of very exact solutions, there might be a need
to run the BIP models frequently in a short time. Another possibility is to consider
fuzziness and uncertainty of the data in the algorithm.

5. Acknowledgement
The authors are grateful for the financial support by the University of Tehran, College of
Engineering, for this research with grant number 27768/1/01.

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

265 www.hrmars.com/journals

References

Baeck, Fogel D, and Michalewicz Z (1997). Handbook of Evolutionary Computation, Oxf.
Univ. Press, NY.
Captivo ME, Climaco J, Figueira J, Martins E, Santos JL (2003),Solving Bicriteria 0-1
Knapsack Problems Using a Labeling Algorithm, Comput. Oper. Res.,30: 1865-1886
Chu PC and, Beasley JE (1998), a Genetic Algorithm for the Multidimensional Knapsack
Problem, J. Heuristics, 4: 63-86
Danna E, Rothberg E, and Pape CL (2005), Exploring Relaxation Induced Neighborhoods
to Improve MIP Solutions. Math. Program., 102:71-90
Domitrescu I and Stuetzle T (2003), Combinations of Local Search and Exact Algorithms,
Applications of Evolutionary Computations, Lect. Notes. Comput. Sc., 2611:211-223,
Springer
Fischetti M and Lodi A (2003), Local Branching, Math. Program. B, 98: 23-49
Fortin D, Tseveendorj I (2009), a Trust Branching Path for Zero-One Programming, Eur. J.
Oper. Res., 197: 439-445
Ghosh S (2007), DINS, a MIP Improvement Heuristic, Lect. Notes Comput. Sc., 4513:310-
323, Springer
Glover F and Laguna M (1997), Tabu Search, Klu. Acad. Publ.
Glover F, Laguna M, and Marti R (2000), Fundamentals of Scatter Search and Path
Relinking, Control. Cybern., 39(3): 653 681
Haartman KV, Kohn W, Zabinsky ZB (2008), A Meta-Control Algorithm for Generating
Approximate Solutions to Binary Integer Programming Problems, Nonlinear. Anal.
Hybrid Syst., 2:1232-1244
Hansen P, Mladenovic N, Urosevic D (2006),Variable Neighborhood Search and Local
Branching, Comput. Oper. Res., 33: 3034-3045
Kellerer H, Pferschy U, and Pisinger D (2004): Knapsack Problems, Springer
Kirkpatrick S, Gellat C and Vecchi M (1983), Optimization by Simulated Annealing,
Science, 220:671-680
Larranaga P and Lozano J (2001), Estimation of Distribution Algorithms, a New Tool for
Evolutionary Computation, Klu. Acad. Publ.
Lazic J, Hanafi S, Mladenovic N, Urosevic D (2009), Variable Neighborhood
Decomposition Search for 0-1 Mixed Integer Programs, Comput. Oper. Res.
P. Moscato and C. Cotta, A Gentle Introduction to Memetic Algorithms, in Handbook of
Metaheuristics, Chapter 5, pp.105-144, F. Glover and G. Kochenberger (Eds.), Klu. Acad.
Publ., Boston, Massachusetts, USA, (2003), ISBN:1-4020-7263-5
Namazifar M, Miller AJ (2008), a Parallel Macro Partitioning Framework for Solving
Mixed Integer Programs, Lect. Notes Comput. Sc., 5015: 343-348, Springer
Nemhauser G and Wolsey L (1988), Integer and Combinatorial Optimization, J. Wiley ,
NY.
Vasquez M , Hao JK (2001), a Hybrid Approach for the 0-1 Multidimensional Knapsack
problem, Int. Joint. Conf. Artif.,

 International Journal of Academic Research in Business and Social Sciences
 January 2012, Vol. 2, No. 1

ISSN: 2222-6990

266 www.hrmars.com/journals

Wang Z, Xing W (2009), a Successive Approximation Algorithm for the Multiple Knapsack
Problem, J. Comb. Optim.,17: 347-366
Wolsey LA (1998), Integer Programming, J. Wiley, NY.

