The Development of Safety Behavior: A 30-Year Review

Rusyda, H. M, Siti Fardaniah Abdul Aziz

To Link this Article: http://dx.doi.org/10.6007/IJAREMS/v10-i1/9212 DOI:10.6007/IJAREMS/v10-i1/9212

Received: 01 January 2021, Revised: 29 January 2021, Accepted: 24 February 2021

Published Online: 21 March 2021

In-Text Citation: (Rusyda & Aziz, 2021)

Copyright: © 2021 The Author(s)
Published by Human Resource Management Academic Research Society (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode

Vol. 10, No. 1, 2021, Pg. 46 - 71

http://hrmars.com/index.php/pages/detail/IJAREMS JOURNAL HOMEPAGE

Full Terms & Conditions of access and use can be found at
http://hrmars.com/index.php/pages/detail/publication-ethics

46
The Development of Safety Behavior: A 30-Year Review

Rusyda, H. M, Siti Fardaniah Abdul Aziz
Human Development Program, Center for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia
Email: daniah@ukm.my

Abstract
In the area of safety at work, safety behavior is becoming a significant concern. Safety behavior is often used interchangeably with safety outcomes, whether positive or negative; the latter being represented by accidents and the financial losses that they entail. Several investigations have tried to reveal a connection between safety policy and safety behavior. Safety behavior is a demonstration of safety policy and the processes employed to avoid adverse safety implications. Traditionally, employees have observed safety processes that follow the safety policy. Recently, however, employees have become effective agents of that policy, by suggesting general enhancements of organizational safety. This modern approach relies strongly on the behavior, awareness, and understanding of employee safety. This standpoint then contributes to another element that scrutinizes a bottom-up strategy to enhance workplace safety. The bottom-up strategy is seen as more versatile but calls for a certain amount of autonomy and emotional ability. With this approach, the obligation to maintain workplace safety is effectively delegated to both employees and workers, each playing a significant role. In this paper, we will demonstrate the relationship between climate and safety behavior. Also, we will discuss the evolution of traditional safety behavior towards the current level of safety participation and proactive safety behavior.

Keywords: Proactive Safety Behavior, Safety Behavior, Safety Climate

Introduction
The most significant industrial disasters have influenced the safety of the workforce for some 30 years since the original climate safety studies. The tragedies of both Bhopal and Chernobyl were attributable to workplace safety offenses which prompted countless social scientists to explore further the functions of senior leadership in formulating strategies to avoid accidents. To guarantee that workers are following all safety processes and preventing unwanted interruptions in their work, the workplace safety environment must emphasize management’s function in creating and implementing the safety strategy.
The safety climate is strongly affected by the organizational climate. Safety climate refers to “shared perceptions concerning safety policies, procedures, and practices” (Zohar, 2011, p. 143) in an organizational setting. Recognition within the organization of the need for safety has developed a holistic strategy to handle and monitor its advancement carefully. Workplace accidents and accident reports are the primary sources of data with which to avoid unfortunate events and significant loss. To be precise, organization and governance are accountable for safeguarding the safety of the workplace. Hence, organizational leaders’ functions are crucial in encouraging safety understanding and procedures among subordinates, by offering extrinsic motivation or rewarding healthy safety behavior.

The importance of the safety climate in improving safety for individuals at work and the question of how that climate operates has been unsure until recently. Although there is a substantial set of studies focusing on safety-related factors, the embedded constructs are sparse on aspects of organizational climate, safety climate, safety behavior, and safety outcomes.

Understanding the Relevance of Climate and Safety Behavior

There are different interpretations of the organizational climate. Tyagi (1982) defines organizational climate as a situationally –determined, psychological process concerning attitudes and performance, while Schneider et al. (2013;1989) calls it a behavioral orientation to policies, practices, and procedures. Others define organizational climate as global perceptions regarding objective organizational situations (Campbell, 1992; Churchill, Ford, & Walker, 1976). The organizational climate is dynamic, and it fluctuates according to policy and operationally-managed preferences (Joyce, Slocum, Slocum, & Joyce, 1982; M. Patterson, Warr, & West, 2004) which can change the way employees perceive and interact with their organization’s existing procedures (Denison, 1996; Hellriegel & Slocum, 1973a).

The role of organizational climate in affecting behavior is observed through a perception process that consists of three dimensions, namely stimuli, restrictions of undesirable behavior, and also rewards and punishments (Qualls & Puto, 1989). Stimuli are strongly associated with the role of leadership (Koene, Vogelaar, & Soeters, 2002; Rogg, Schmidt, Shull, & Schmitt, 2001) which encourages employees to follow certain procedures. The most important stimulus was in the area of transformation management (Dust, Resick, Margolis, Mawritz, & Greenbaum, 2018; Glisson & Hemmelgarn, 1998; Toulson & Smith, 1994), which is an important predictor in an organization, owing to the significance of aspiration and the drive to attain efficiency. The organizational policy is often used to clarify the importance of maintaining high standards of conduct (Clarke, Sloane & Aiken, 2002; Verbeke, Volgering, & Hessels, 2002) that are compatible with good organizational practices.

Organizational climate attempts to achieve high-level performance, which then impacts favorably upon four distinct categories, namely economics (as shown by enhanced profit and productivity) (Aarons & Sawitzky, 2006; Montes, Moreno, & Fernández, 2004); technology (new outputs); commercial advantage (products or industrial specialization) and social effects (satisfied customers) (Patterson et al., 2005). Tangible results are the most common factor in understanding organizational performance within organizational studies (Dickson, Resick, & Hanges, 2006; Patterson, Warr, & West, 2004).
Safety Climate

Safety climate refers to the mutual knowledge and perception of safety among employees within their organization that warrants particular rules governing certain behaviors (Diaz & Cabrera, 1997; Wang, Sun, Du, & Wang, 2018; Yang, Spector, Chang, Gallant-Roman, & Powell, 2012; Zohar, 1980).

Safety climate is a subgroup of organizational climate identified as one of the leading research in workplace safety. Industrial and organizational psychology divides safety climate into two separate classifications: the climate of safety and the climate of psychosocial safety (Dormann & Zapf, 1999; Tuckey, Dollard, Saebel, & Berry, 2010; Zapf, Dormann, & Frese, 1996). Safety climate is based upon an organization’s perceived value of safety (Arnol, 2018; Bahari & Clarke, 2013; Griffin & Neal, 2000; Niskanen, 1994), whereas the climate of psychosocial safety focuses on psychological health and well-being and is exclusively linked to a person's psychological condition (Becher, Dollard, Smith, & Li, 2018; Hall, Dollard, & Coward, 2018).

However, in addition to Zohar’s safety climate definition, other scales have been created to measure safety for particular industries (Ghahramani & Khalkhali, 2015; Mearns, Whitaker, & Flin, 2001; Nel & Visitor, 1998; Niskanen, 1994) or for particular nations (Becher et al., 2018; Hutchinson et al., 2006; Kines et al., 2011). Nevertheless, Zohar’s definition of safety climate is that most commonly adopted by studies globally, based on meta-analysis findings (Beus, McCord, & Zohar, 2016).

For the past 40 years, safety climate has been researched from three standpoints:
2. Safety climate as a precedent for performance (Andrew, Neal, & Griffin, 2000; Blair, 2003; Griffin & Neal, 2000; Grill, Pousette, Nielsen, Grytnes, & Törner, 2017; Hu et al., 2018; Díaz & Cabrera, 1997; Flin, Burns, Mearns, Yule, & Robertson, 2006; Oah, Na, & Moon, 2018; Seo, Torabi, Blair, & Ellis, 2004; Singer et al., 2007).

Eight specific dimensions are associated with employees’ collective perceptions of the organizational safety climate (Jiang, Lavaysse, & Probst, 2018; Singer, Lin, Falwell, Gaba, & Baker, 2009):
1. Perceived importance of safety training programs.
2. Perceived management attitudes towards safety.
3. Perceived effects of safe conduct on promotion.
4. Perceived level of risk at work.
5. Perceived effects of the required pace of work on safety.
6. Perceived status of the safety officer.
7. Perceived effects of safe conduct on social status.
8. Perceived status of the safety committee.

These eight factors were identified by factor analysis (Zohar, 1980, 2002, 2008), and a general organizational climate that includes communication, values, managerial culture, and safety should also provide a safety assessment method (Zohar, 1980). Following that factor analysis, nine redundant items were removed from the initial safety climate questionnaire, and
40 items were kept. Following this research on safety climate, workplace-safety studies led to the assertion that human error is not the primary cause of workplace accidents (Neal, Griffin, & Hart, 2000).

Although Zohar’s safety climate study was among the first of its kind, it has been re-evaluated and criticized by other researchers. Brown and Holmes (1986), authors of the first study to re-evaluate the safety climate, researched an American sample using a safety climate measure. This validation study was conducted to define whether the safety climate scale can be used for other samples. Brown and Holmes, however, divided the sample into two categories: pre-traumatic (without workplace accident experience) and post-traumatic (with workplace accident experience) (Cabrera-Nguyen, 2010; Díaz & Cabrera, 1997; Eagly, 1992) to determine whether the proposed safety climate measure is universal and can be used for both accident/injury and non-accident/injury cohorts.

The findings indicate that the eight-factor climate safety measure reduced the three-factor climate safety measure (Michael, Evans, Jansen, & Haight, 2005). The results show that only three factors were accepted; worker insight into how management was concerned with their well-being, an understanding of the employees’ active management in addressing this issue, and the physical risk perception of employees (Pousette, Larsson, & Törner, 2008; Tholén, Pousette, & Törner, 2013). Brown and Holmes also found that Zohar’s' perceived safety management attitudes measure management behavior, not attitude, and so they replaced them with the second factor in their research; employee perception of how active management responded to this concern.

The newly-improved safety climate measure has an acceptable measurement model with CFI=.94 (Baba, Tourigny, Wang, & Liu, 2009; Bertolino, Truxillo, & Fraccaroli, 2011). Following the Brown and Holmes study, extensive validation research was undertaken to investigate the universality of safety climate measures (e.g., Huang et al., 2016; Johnson, 2007; Kines et al., 2010).

However, one important feature of safety climate studies is that they include multi-level modeling research to understand the perception process at the group level (Howardson, Karim, & Horn, 2017; Idris, Dollard, & Yulita, 2014; Petrou, Demerouti, Peeters, Schaufeli, & Hetland, 2012; Zohar, 2008). This is consistent with climate being seen as "a shared perception" (Dickson, Smith, Grojean, & Ehrhart, 2001; Idris, Dollard, Coward, & Dormann, 2012; Kines et al., 2011). Studies should be conducted on at least two levels to measure mutual perception; individual level and group level (Yin, Xing, Li, & Guo, 2017; Yu, de Ruyter, Patterson, & Chen, 2018) to determine the impact of the safety climate. The latter is only valid when the perception is mutually agreeable and confirmed by the employees, as mentioned at the beginning of this article.

Although safety climate is studied for its role in occupational accidents (Griffin et al., 2014; H. Liu et al., 2010; Morrow et al., 2010), self-reported injuries (Kolarcik, Geckova, Orosova, van Dijk, & Reijneveld, 2009; Probst, 2004; Vinodkumar & Bhasi, 2010), job demands and workloads (Donoso, Demerouti, Garrosa Hernández, Moreno-Jiménez, & Carmona Cobo, 2015; Ho & Astakhova, 2018; Javaid et al., 2018; Niskanen, 1994; Odoardi, 2015), there has been little study of the interaction between safety climate and safety behavior.
Safety Behavior: Definitions, Constructs, and Conceptualizations

Attempts were made to comprehend the relationship between safety climate and safety behavior when scientists started exploring the connection between the two factors. Zohar endeavored to find a connection between his safety climate measurement and behavior and discovered that safety climate is linked to safety behavior through a collective safety climate (DeJoy, Schaffer, Wilson, Vandenberg, & Butts, 2004; Zohar, 2008).

This group safety climate has a more logical explanation in understanding the said relationship because individual employees are more inclined to follow the group’s safety behavior (Zhang, Chen, Li, Wu, & Skibniewski, 2018). Moreover, employees seldom feel the connection with the organizational safety climate, especially management’s commitment to safety, due to the power structure and power distance (Purwanto, 2018; Singh & Verma, 2018).

Glendon and Litherland (2001) created a behavioral measure of safety climate with their Safety Climate Questionnaire (SCQ) covering 40 factors. In doing so, they moved away from Zohar’s safety climate definition, which is based exclusively on employee expectations of the organizational approach to safety (Jones, Momin, Good, Shea, & Patric, 2009; Mackinnon & Sherry, 2012).

These behaviorally-anchored scales have been investigated to see whether safety behavior is internally induced (by individual employees) or externally induced (by their working environment). It also examines the extent to which human error affects the number of accidents and injuries (Evans, Glendon, & Creed, 2007; Glendon & Stanton, 2000). The scale for SCQ is verbally anchored, in that the questions must be answered with "never”, "sometimes", or “always” (Didla, Mearns, & Flin, 2009; Grill et al., 2018; Hystad & Bye, 2013). However, the relationship between safety climate and safety behavior still uncertain and insignificant.

More research was conducted to identify the connection between safety climate and safety behavior, using a modified version of Zohar’s safety climate definition and peers' observation of safe/unsafe work behavior (Cooper & Phillips, 2004b). The management attitude scale was modified, and management actions regarding safety were reintroduced. Several employees were recruited and trained to observe any good conduct or misconduct by peers or leaders, as part of the measurement of safety behavior (Graen & Uhl-Bien, 1995; Hofmann, Morgeson, & Gerras, 2003). The relationship between safety climate and safety behavior, however, was limited and inconsistent.

Several problems have been identified based on these studies. First, the conceptualization of safety behavior is uncertain. Second, because the relationship between safety climate and safety behavior appears weak to the point of being meaningless, there is another hypothesis of a proximal-distal relationship between safety climate and safety behavior (Kines et al., 2010; Zhao & Peterson, 2017). Research by Griffin and Neal (2000) aimed to enhance an understanding of this relationship.

Their work began with redefinition and re-conceptualization of safety behavior. They also explored the effects of additional individual determinants such as attitudes, skills, and motivation, as antecedents of safety behavior and organizational safety climate, along with the effects of leadership and personality as distal antecedents (Clarke et al., 2016; Kinman & Jones, 2005).
Safe and unsafe behavior

Safety behavior is a simple term, referring to a series of actions designed to reduce potential accidents (Meliá, Mearns, Silva, & Lima, 2008; Shamsuddin, Ani, Ismail, & Ibrahim, 2015). While unsafe behavior refers to actions that are more likely to increase risk and accidents (Dester & Blockley, 1995), discussions about unsafe behavior often presume that an individual is uncertain as to what constitutes safe and unsafe behavior. This could be due to limited understanding or ignorance of safety processes (Aytac & Dursun, 2011) when forced to perform work in an unsafe manner due to contextual constraints (Gonçalves, da Silva, Lima, & Meliá, 2008; Nordfjærn, Jorgensen, & Rundmo, 2011). Similarly, individual characteristics like inattention, demotivation, and carelessness (Reason, 2016) may result in events that are potentially catastrophic (Zohar & Erev, 2006).

Safe and unsafe behavior in the behavioral rating process (Seppälä et al., 2017) are crucial in the inventory construction. Behavioral-based safety is a bottom-up approach to identifying and understanding safe and unsafe behavior of different types (Shamsuddin et al., 2015). This procedure is well-known in the Behavior-Based Safety program that highlighted the importance of self, peer, and subordinate review of safe and unsafe behavior in a specific organization (Choudhry, 2014). The data is treated as the basic information needed for an employer to develop the best intervention program to improve security at work (Chakrabarty, 2018).

Behavior-based safety attracted widespread attention when first introduced as a new form of safety-management program that focused upon employees (Ismail, 2014). It has since attracted criticism, however, and stands accused of being a new form of manipulation (Folkman, 2018; Spigener, Amato, & Craig, 2002) by employers keen to sidestep their responsibility for maintaining workplace safety (Skowron-Grabowska & Sobociński, 2018).

One major flaw in a Behavior-Based Safety program is the under-reporting of accidents and injuries (Scott, 2001) caused by fear of punishment for failing to perform tasks in a safe manner (Cooper, 2009). Apart from that, it has been praised as one of the best methods of identifying types of safe behavior while addressing unsafe behavior for a safer environment (Depasquale & Geller, 1999).

The Development of Safety Behavior: Safety Behavior as Safety Performance

The definition of safety behavior is a comprehensive series of concepts based on the view of clinical psychology, industrial psychology, organizational psychology, and social learning. From the perspective of social learning, the safety behavior of an individual is explained through an analysis of how safe behavior is formed by environmental learning (Golkar, Castro, & Olsson, 2015). A further path in understanding safety behavior is to note the role played by fear. Fear is a condition in which people are more aware of unfortunate consequences and they will take all possible steps to avoid encountering this condition (Ahn, Lee, and Steel, 2013). Safety behavior stems essentially from social learning, which emphasizes the importance of ‘carrot and stick approach’ to maintain safety. An organization can learn much from its members, be they an employee’s peers or leaders (Newaz et al., 2010).

Clinical psychology refers to explicit or implicit safety behaviors, under exact circumstances, to make efforts to prevent formidable results (Salkovskis et al., 1999; Salkovskis, 1991). The concept was derived from the clinical psychology research area that uses the same concept to treat patients with anxiety or other psychological illness (Radomskey, 2008;
Vansteenwegen et al., 2005). The therapy, which is also connected with cognitive behavior therapy (CBT, 1999; Morgan & Raffle, 1999), is a prevention method that employs several techniques to decrease clients’ potential stress.

From an industrial and psychological point of view, safety behavior is solely linked to compliance with policies and procedures (Toppazzini & Wiener, 2017) to prevent accidents and injuries to oneself or others (Adilla et al., 2017; Nahrgang, Morgeson, & Hofmann, 2011) as well as to maintain physical and psychological health (Gonçalves et al., 2008). Safety behavior is known as one of the most critical elements in ensuring the prevention of accidents and injuries (Agnew, Flin, & Mearns, 2013). If it fails to do so, the result is the loss of valuable workplace resources (Shamsuddin et al., 2015).

To be precise, safety behavior, which is measurable based on a safe and unsafe inventory in the organization (Uehli et al., 2014) is a crucial issue (Berberoglu, 2018) that has a positive or negative impact, depending on the extent to which it is embraced by an organization’s members (Beus et al., 2010; McSween & Moran, 2017), in the interests of the organization as a whole. In the next section, further explanations of safety conduct will be discussed.

Based on Kurt Lewis’s field theory, safety behavior is a performance that arises from the interaction between a person and his or her environment (Blair, 2003; Du et al., 2018; Lewin, 1943). Safety behavior is much more observable, quantifiable, and tangible (Råheim et al., 2016; Uehli et al., 2014) compared to behavior with a broader, more subjective context (Blair, 2003). Safety performance (behavior) is often mistakenly seen as similar to safety outcomes. Although both concepts are connected, safety performance differs from a theoretical perspective (Griffin et al., 2014; Singer et al., 2007).

There are two outcomes in safety: positive outcomes and negative outcomes and the greatest predictors for safety behaviors are motive and skills (McCoy, Roy, & Sirkman, 2013; Panatik et al., 2012). Safety behavior can be divided into three categories; safety compliance, safety participation, and safety initiative. Safety compliance and safety participation were drawn from the performance model of prosocial organizational behavior and organizational citizenship behavior (Motowildo, Borman, & Schmit, 1997; Organ, 1997; Van Scotter, Motowidlo, & Cross, 2000). Safety initiative, on the other hand, stemmed from the proactivity construct that elaborated on anticipatory actions in safety behavior (Curcuruto et al., 2015; Matteo Curcuruto & Griffin, 2018).

The Conventional Stage: Safety Compliance

Compliance with desirable safety behavior, such as procedural compliance or using personal protective devices, plays its part in ensuring personal safety (Ersen & Bilgiç, 2018). It refers to the assumption that individuals must develop a routine according to labor safety standards that includes following a formal set of tasks which has a significant impact on the safety results of the organization (McCoy, Roy, & Sirkman, 2013). Safety compliance is related to task performance that relies upon employees fulfilling expectations to follow prescribed procedures that are task-oriented and associated with the employees’ job descriptions (Gonçalves et al., 2008). The conceptualization of safety compliance is quite particular; it relates to observable and measurable skills and abilities (Diaz-Vilela et al., 2015).

An employee safety program should be focused on the employer’s safety climate and strategy, and leaders are accountable for motivating employees to follow formal directions (Kines
et al., 2010). However, safety compliance assumes that the employees’ function is restricted and should be about adhering to safety strategy and its processes (Law et al., 2011). Identifying safety standards and personal safety behaviors that play a major role in compliance with safety regulations arises from the safe and unsafe behavior inventory discussed in the previous section (Silva, Lima, & Baptista, 2004; Warmerdam et al., 2018).

Safety compliance depends on whether the employees performed the task in a safe manner, emphasizing the importance of mental capacity in understanding and processing instructions to meet all demands (Locke, Frederick, Lee, & Bobko, 1984; Spitzmuller, Sin, Howe, & Fatimah, 2015). Also known as passivity, safety compliance should be seen as a process that begins with goal-setting development (Greenglass & Fiksenbaum, 2009). To ensure successful performance, employers stress the importance of maintaining safety behavior and accident prevention as their default objective. The employees must, therefore, follow safety procedures to achieve objectives (Locke & Latham, 1990; Rolfe, 2006; Rotundo & Sackett, 2005).

However, understanding and internalizing a predetermined goal is insufficient without the attitude and trust that follows and implements procedures. Safety compliance that began with understanding the predetermined goal is usually followed by an appropriate attitude toward the idea (Watts et al., 2010). Attitude is a positive or negative response to a predetermined goal, depending on the effects of other accompanying factors, such as learning experience, knowledge, and reinforcement (Kaya, Barsbay, & Karabulut, 2010).

Studies have shown that age and work experience have an impact on safety attitudes in adverse situations. Older employees tend to have negative attitudes towards safety compliance due to their risk-taking propensity, assuming that their length of service and work experience have provided them with better skills for anticipating accidents (Heyer et al., 1992; Warr, 1990). Self-confidence, a motivational mechanism also known as self-efficacy, refers to the employees’ belief that the goal is achievable and brings positive outcomes for them and others (de Jonge et al., 2004). Self-confidence in safety is associated with people’s judgment of their capabilities to coordinate and implement a series of activities in achieving a designated safety behavior (Katz‐Navon, Naveh, & Stern, 2007). The relationship between attitude and self-confidence is strong and significant, which explains why a positive safety attitude will increase self-confidence in safety compliance (Conchie, 2013; Dzewaltowski, Noble, & Shaw, 1990; Haas et al., 2019).

The people-oriented stage: Safety participation
Contextual performance is defined as a behavioral construct that goes beyond the required task’s performance (Van Scotter & Motowidlo, 1996). Drawing from the contextual approach to performance, safety participation is referred to as helping peers and leaders to address issues related to occupational safety (Clissold, Buttigieg, & Cieri, 2012), or volunteering for activities that promote workplace safety. These could include attending safety meetings, voicing ideas, or raising concerns to improve workplace safety (Liu, Zhao, Jiang, & Li, 2015) and not just personal safety (Penner, 2002; Zhang & Wu, 2014). Safety participation is teamwork, and social effort has a role to play in promoting the organizational culture (Motowidlo et al., 1997), and persuading employees to offer a positive commitment to complying with organizational rules (Tutar, Altinoz, & Cakiroglu, 2011).

Safety participation is often linked to extra-role behavior rather than to other organizational behavioral patterns such as prosocial behavior or organizational citizenship.
behavior (Belschak & Den Hartog, 2010; Schmitt, Den Hartog, & Belschak, 2016). The additional role is related to helping people and challenging the safety performance system (Clayton, 2015) by actions such as "whistleblowing" (Bjørkelo, Einarsen, & Matthiesen, 2010).

In terms of safety participation, whistleblowing is crucial because employees need to be confident in expressing safety concerns, even if to do so is destructive, either to them or to their social relationships (Hu et al., 2018). This action aims to promote a supportive, safe environment for the whole organization (Grant, 2013).

The distinguishing factor between safety compliance and safety participation is the concept of interpersonal and intrapersonal relationship (Judge, LePine, & Rich, 2006). Safety compliance is specifically related to personal safety and is observed from a cognitive and internalized perspective (Welbourne, Johnson, & Erez, 1997). Safety participation, on the other hand, is strengthened through the relationship between an organization’s members and is more practical across the organizational hierarchy (Greenslade & Jimmieson, 2007). Safety participation’s core principles include helping other people, such as team members or leaders, to achieve the predetermined goal (Mohammed, Mathieu, Bartlett, & Wiley, 2011). Helping behavior is the paramount factor behind effective work in team safety settings (O’Connell, Hartman, McDaniel, Grubb, & Lawrence, 2007). Helpfulness is neither reward-oriented nor required by the formal job description (Mersman & Donaldson, 2000), it is absolute voluntarily effort.

Psychological safety, such as trust between members is vital to ensure that safety participation is achieved (Aryee, Sun, Chen, & Debrah, 2008). Trust is one of the main factors in nurturing safety participation and bringing employees and their leaders to work together (Alaarj, Mohamed, Salwa, & Bustamam, 2017; Triplett & Loh, 2018) to improve and contribute to the organization’s safety environment (Neto, Silva, & Ferreira, 2018). Participants must demonstrate and guarantee that they are both credible and willing to assist the safety suggestions of other participants (Brown, Treviño, & Harrison 2005).

Leaders have a greater role in building trust and promoting security by preserving a secure, favorable and supportive environment in which the organization’s members can interact (Lahuis, Martin, & Avis, 2005), and by encouraging and welcoming proposals to improve safety at work (Carlson et al., 2008).

The Proactive Stage: Safety initiative

The safety initiative is traditionally conceptualized as a safeguard effort begun at senior-management level to improve and maintain safety at work (Dorn & Brown, 2003; Hoe, 2014). The managerial level is answerable to either a regulatory body, such as the National Institute for Occupational Safety and Health (NIOSH), or to their employers (Cunningham & Jacobson, 2018).

Safety initiatives are frequently implemented as a reactive or passive effort by employers to maintain safety or to reduce losses due to accidents and injuries (McFadden, Henagan, & Gowen III, 2009). Safety initiatives are based on the concept of a safety culture that emphasizes the responsibility of the government and employers to provide a safe working environment and promote safety and health in the workplace (Ali, Abdullah, & Subramaniam, 2009; Parizad et al., 2018).

The essence of the safety initiative is to build awareness, to offer knowledge and expertise, and to serve as a platform for discussions of safety. The components of safety
initiatives include safety policies, safety committees, safety training sessions, and safety meetings (Hoonakker et al., 2005) and are largely aligned with the compliance with safety initiatives discussed earlier.

However, the safety initiative has recently been redefined and observed from a different perspective; namely improving the general work environment (Matteo Curcuruto, Parker, & Griffin, 2019). Emerging from the constructs of proactive behavior, safety initiatives are referred to as anticipatory, self-initiated and change-oriented efforts to participate in safety (Matteo Curcuruto & Griffin, 2018) and are often carried out at a personal level (Low, Man, & Chan, 2018; Wang, Sun, Du, & Wang, 2018). The safety initiative is now being constructed as a new form of safety behavior; one that follows a bottom-up approach that differs from safety participation from the individuals and future-focused approach (Haas et al., 2019).

Conclusion

A safe working environment is important for both employees and employers. Avoiding negative outcomes such as accidents, injuries, and the serious financial losses they can entail for those involved should be an organization’s principal focus, alongside maintaining its employees’ well-being. Studies, however, have shown that policies without enforcement and evaluation are fruitless and often lead to more critical issues affecting organizational sustainability.

Employing the conventional lens, safety behavior is perceived as the product of a comprehensive safety and enforcement policy. Employees are recognized as a unit that has a role to play in complying with the rules established by the behavioral change organization. Although the stand is commendable, other internal factors like individual differences must be examined and acknowledged. Changes in job descriptions, increasing employee autonomy, and opportunities to develop a safer workplace are among the determining factors for injury and accident prevention. A positive safety climate is important to maintain a safer workplace. However, employees are the most important agents of change, when they demonstrate positive attitudes, agreeability, and acceptance of a safe workplace.
References

https://doi.org/10.3389/fpsyg.2015.00466
of twenty industry-wide One-on-one interviews and focus-group meetings were held at 20 organizations that had implemented a behavior-based safety (BBS) process in order to find reasons for pro, 30(4), 237–249.

511–521. https://doi.org/10.1016/j.jsr.2007.07.001

Seppälä, T., Hankonen, N., Korkiaikangas, E., Ruusuvuori, J., & Laitinen, J. (2017). National policies for the promotion of physical activity and healthy nutrition in the workplace context: A behaviour change wheel guided content analysis of policy papers in Finland. *BMC Public Health, 18*(1), 1–9. https://doi.org/10.1186/s12889-017-4574-3

Yu, T., de Ruyter, K., Patterson, P., & Chen, C. F. (2018). The formation of a cross-selling initiative

