
INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN ACCOUNTING, FINANCE AND 

MANAGEMENT SCIENCES  

 Vol. 2 , No. 3, 2012, E-ISSN: 2225-8329 © 2012 HRMARS 
 

43 
 

 

 

 

 

Full Terms & Conditions of access and use can be found at 

http://hrmars.com/index.php/pages/detail/publication-ethics 

 

Improving the Forecasting Power of Volatility Models 
 

Ahmed Bensaida 
 
 

To Link this Article: http://dx.doi.org/10.6007/IJARAFMS/v2-i3/9944             DOI:10.6007/IJARAFMS /v2-i3/9944 

 

Received: 16 July 2012, Revised: 11 August 2012, Accepted: 24 August 2012 

 

Published Online: 18 September 2012 

 

In-Text Citation: (Bensaida, 2012) 
To Cite this Article: Bensaida, A. (2012). Improving the Forecasting Power of Volatility Models. International 

Journal of Academic Research in Accounting Finance and Management Sciences, 2(3), 43–57. 
 

Copyright: © 2012 The Author(s)  

Published by Human Resource Management Academic Research Society (www.hrmars.com) 
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, 
translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full 
attribution to the original publication and authors. The full terms of this license may be seen 
at: http://creativecommons.org/licences/by/4.0/legalcode 

Vol. 2, No. 3, 2012, Pg. 43 - 57 

http://hrmars.com/index.php/pages/detail/IJARAFMS JOURNAL HOMEPAGE 

http://creativecommons.org/licences/by/4.0/legalcode


INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN ACCOUNTING, FINANCE AND 

MANAGEMENT SCIENCES  

 Vol. 2 , No. 3, 2012, E-ISSN: 2225-8329 © 2012 HRMARS 
 

44 
 

 

Improving the Forecasting Power of Volatility Models 
 

Ahmed Bensaida 
Faculty of Economics and Management of Mahdia, University of Monastir, Sidi Massaoud, Hiboun 

5111, Mahdia, TUNISIA 
Email: ahmedbensaida@yahoo.com 

 
Abstract 
Volatility models have been extensively used in risk modeling especially GARCH models under the 
normal distribution. Although they generate highly significant coefficient estimates, these models are 
known to have poor forecasting power. It is therefore interesting to develop a different approach of 
risk modeling to improve forecasting results. By using the generalized t-distribution in modeling the 
changes in the distribution of stock index returns, the results show a significant improvement in the 
forecasting power. Moreover, Monte Carlo simulations have confirmed that the index returns are 
better explained by ARCH-type models. 
Keywords: Generalized t, GARCH, Forecast, Index Return 
 
Introduction 

A trader is always faced by the risk of price fluctuation when buying or selling a given stock. In 
response, financial intermediaries have developed many hedging strategies to protect their positions 
against risk. Nevertheless, these strategies depend on the expected  future  volatility of  the  asset  
which  is  usually forecasted  by  GARCH models. Recent studies have shown that GARCH models have 
poor forecasting power and suggested the use of intra-day observations to increase forecasting 
efficiency. Since intra-day observations are not readily available, there is a need to modify the model 
properties concerning the default choice of normal distribution. 

Existing literature dealing with ARCH models focuses on volatility components, and ignores the 
real distribution of the returns, which is an important factor for model maximum likelihood 
estimation. Although it is well known that the distribution of a given financial time series has thicker 
tails than the normal, the use of the normal distribution with ARCH-type models offer a fatter-tail 
conditional distribution.1 That’s why researchers did not give much interest on the used distribution, 

 
1 If we have

t t t
u h= , and the conditional distribution of εt is assumed to be time invariant with a 

finite fourth moment, it follows by Jensen’s inequality that:

. Given a standardized normal εt, the unconditional 

distribution for ut is therefore leptokurtic. 
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and have focused their efforts in search for new forms of the volatility equation inside the ARCH-type 
model to capture newly discovered behavior. Zhang et al. (2006) for example, have developed the 
Mixture GARCH, which offers thicker tails than those of the associated GARCH models regardless of 
the used distribution. However, it is still preferable to capture the tail thickness by the estimated 
distribution and not by the variance equation because the tails of the conditional normal distribution 
are not thick enough to describe the process and the distribution is not fully adaptable to the type of 
data. 

This paper is divided into 6 sections: Section one describes the sample, section two describes 
the methodology, section three describes the generalized t- distribution, section four presents our 
results, section five is concerned with forecasting, section six is devoted to simulations, and we 
conclude in section seven. 

 
Sample 

The sample consists of three daily closing stock indexes: S&P 500 SSt, Nikkei 225 NSt, and CAC 40 

CSt, starting from January 1st, 1996 and ending on September 15th, 2006 (10 years, 8 months and 15 
days of daily observations). Data are collected from the Yahoo finance web page. The sample is 
thereafter divided into two sub-samples, the first ten years (until December 31st, 2005) are used for 
estimation and the rest is used for out-of-sample forecasting. 

Let’s denote St the spot price of a stock index, its return is computed as follow: ; 

hence, providing (T–1) observations. The return is then analyzed for linear and non-linear 
dependencies. Linear dependency can be detected by the study of the autocorrelation function (ACF), 
and partial autocorrelation function (PACF) in a way to determine the ARIMA process that can fit the 
observations. The degree of integration in an ARIMA (p, d, q) process can be determined by applying 
the GPH test developed by Geweke & Porter-Hudack (1983). All index returns are linearly 
independent. 

The linearly whitened residuals are next tested for non-linear dependency through the BDS test 
developed by Geweke & Porter-Hudack (1983) and improved by Kanzler (1999).i Non-linear 
dependency is caused by non-stationarity, chaotic behavior or stochastic behavior. 

Non-stationarity implies a change of the behavior of the returns over a long time period. 
Changes in the economy can affect such change. The non-stationarity can be caused by structural 
changes: technological and financial innovations, policy changes, war …etc. Chow breakpoint test 
shows that the returns are stable over the period of study. 

Chaotic behavior is detected by the newly developed test based on the Lyapunov exponent 
(BenSaida A., 2007. Using the Lyapunov Exponent as a Practical Test for Noisy Chaos. Retrieved from: 
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=970074.). The last possibility of non-linear 
dependency is that returns are stochastic as verified by the Lagrange multiplier or ARCH test. 

 
2. Methodology of research 
Despite the extensive work on ARCH models, the GARCH (1, 1) is still the favorite model chosen 

in the majority of cases. Such choice seems to be rather arbitrary. Moreover, no consistent work has 
yet been done on the true distribution of the risk of a given asset. Indeed, the normal distribution 
remains a mechanical choice in the studies. It is worth noting that some have studied the tail-fatness 
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usually observed in financial time series data, and hence have suggested other fatter-tail 
distributions. Bollerslev (1987) for example has suggested the standardized t-distribution to model 
American stock price indexes and DEM/USD and GBP/USD exchange rates under the GARCH (1, 1) 
model and found a relative improvement over the normal distribution. However, the fact that the 
standardized t-distribution is fully adaptable is debatable and a more detailed study on the true 
distribution is needed. 

The GARCH (p, q) model is defined as: 
 

   (1) 

 
ut has zero mean and εt are Normally and Independently Distributed (IID) with zero mean and 

unitary variance, εt are serially uncorrelated and are independent from rt. The exogenous variable yt 
may contain past realizations of rt. Usually, when modeling time series, the dependent variable rt is 
first centered to have “zero” mean, then the residuals from the regression are modeled using ARCH 
specification. yt is a matrix of exogenous variables affecting the endogenous variable rt (including 
autoregressive and moving average ARMA), and ς is a vector of coefficients. Non-negativity and 
stationarity conditions state that all coefficients must be positive: α0 > 0, αi ≥ 0 (i = 1, …, q), and βj ≥ 0 

(j = 1, …, p), and . 

To estimate ARCH models we need to maximize the log-likelihood function derived from the 
used distribution. A quick comparison of the true dispersion represented by the non-parametric 
distribution along with the normal distribution of the Nikkei 225 return clearly shows that the normal 
choice is not adequate. 

Normality tests have rejected the hypothesis of normal returns for all studied indexes (Table 
1). 
Table 1. Normality tests results 
 

Normality tests Srt Nrt Crt 
Jarque-Bera JB 920

.0753 
386

.2078 
724

.6719  p-
value 

0  0  0  
Kolomogorov-

Smirnov 
K

S 
0.0

552 
0.0

338 
0.0

658  p-
value 

4.0
7E-7* 

0.0
012 

5.1
8E-10* Shapiro-Wilk S

W 
0

.9
7 

 0.9
819 

0.9
677  p-

value 
3.6

9E-5 
3.1

7E-4 
2.5

9E-5 * Lilliefors p-value < 0.01. 
 
The estimation is carried on the 3 returns using GARCH, IGARCH, EGARCH and APARCH models. 

Orders p and q will be varied from (1, 1) up to (5, 5) for Srt, and up to (6, 6) for Nrt, and Crt as suggested 
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by the ACF and PACF of the squared residuals. Volatility in-mean specification, according to which an 
asset with a higher perceived risk would pay a higher return on average, and holiday effect, according 
to which the information stream continues even during weekends and holidays, are also tested. 

Model selection is based on the Schwarz Information Criteria. Indeed, Liew and Chong (2005) 
have found that the Schwarz Information Criterion “SIC” identifies the true ARCH-type model better 
than any other information criteria. 

Maximum likelihood is based on the BHHH method because this algorithm is known to be faster 
in execution. Sometimes, the BHHH algorithm do not reach convergence after a long number of 
iterations, in this case the Marquardt algorithm is used. The Marquardt method modifies the BHHH 
algorithm by adding a correction matrix or ridge factor to the Hessian approximation. The ridge 
correction handles numerical problems when the outer product is near singular and may improve the 
convergence rate. As above, the Marquardt algorithm pushes the updated parameter values in the 
direction of the gradient. In conclusion, the BHHH algorithm and the Marquardt algorithm are 
complementary; failure of one method to reach convergence may be cured by the other method. 

 
The Generalized T Distribution 

The GTD has the following form: 
 

   (2) 

Where  > 0, ψ > 0, and b > 0. B(.) is the Beta function. 
 

An important characteristic of the GTD that it nests both the standard t- distribution when =2, 
the degree of freedom becomes 2ψ; and the Generalized Error Distribution when ψ tends to infinity, 

in this case the GED has  degree of freedom. When both conditions are met, i.e., =2 and ψ tends 
to infinity, the GTD becomes the normal distribution. 

The GTD is a symmetric function; its mean equals zero. The reason of choosing a symmetric  
function  is  quite  simple  to  explain:  the  purpose  of  risk  modeling  is  to determine  its  behavior  
and  to  give  a  reasonable  forecast  of  future  realizations. 

Nevertheless, the fact that past realizations of stock index returns have shown a large 
probability for negative changes compared to positive changes, does not imply that future 
realizations of stock index returns will have the same gap of probability between positive values and 
negative values.2 Consequently, and by taking in fact that the future is uncertain, the assumption that 
the stock index returns have the same chance to increase as to decrease is assumed. Therefore, a 
symmetric probability distribution is the best guess for an uncertain future. And if a non-symmetric 
distribution was assumed, a strong hypothesis for the uncertain future concerning the movement of 

 
2 A test for skewness has suggested that the S&P 500 return and Nikkei 225 return distributions are 
symmetric, the CAC 40 return distribution is skewed to the left, and the BVMT return distribution is 
skewed to the right. 
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the stock index returns is made, which is the assertion that the last would tend to move to one way 
more than to another; and this statement is skeptical. 

The next step is to determine under which conditions the variance of GTD equals one. The only 
condition under which GTD has unitary variance is to set: 

 , .ψ > 2   (3) 

 
The skewness of the GTD is zero. Its kurtosis is computed using the formula: The kurtosis of this 

distribution is calculated using the formula: . Knowing that 

E(x) = 0 and Var(x) = 1, we obtain: . To solve this integral, an 

integration rule proved by Gradshteyn&Ryzhik (2007), p. 341, § 3.241.4, is used: 

, under the conditions that n > 0, p > -1, and         (k.n 

– p) > 1. In the present case, the kurtosis of GTD is: 
 

   (4) 

 

This kurtosis is defined when .ψ > 4 and it is useful to compare it with the sample kurtosis 

after estimating the distribution parameters. As  and ψ increase, the kurtosis decreases toward 

zero; and conversely, as the product .ψ goes toward 4, the kurtosis increases exponentially to reach 

infinity because . 

Since  the  generalized  t-distribution  is  governed  by  two  shape  parameters,  it becomes 
inevitable that the GTD can have a large variety of shapes. 

The log-likelihood to be maximized is: 

 (5) 

 
For EGARCH model specification, the expectation of the absolute value of εt under the 

generalized t-distribution is given by: 
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  (6) 

For the APARCH model, the stationarity condition is given by: 

 , where: 

 
 

Under the condition that: .ψ > max (d, 2). Proof is provided in the appendix (1). 
 

Results 
For comparison purpose, all models are estimated under the Gaussian errors (Table 2) and GTD 

(Table 3). 
 

Table 2. Results summary under Normal errors 

 Srt Nrt Crt 
Model type EGARCH EGARCH EGARCH 
Orders (p, q) (1, 3) (1, 1) (1, 1) 
SIC -15934.15 -14177.84 -15092.04 

 
Table 3. Results summary under GTD errors 

 Srt Nrt Crt 
Model type EGARCH EGARCH EGARCH 
Orders (p, q) (1, 3) (1, 1) (1, 1) 
 1.99 1.83 2.07 
ψ 8.11 8.64 7.56* 
SIC -15936.44 -14200.03 -15088.72 

 
* Not significant at 5% significance level. 

 
The models described above perform well relatively to other same-type models. However, the 

question now is whether these models are consistent or not. In other words, do they capture the 
effect generated by the volatility of the stock index returns? For this task, a specification test is 
needed. When specifying ARCH type models, the errors εt are assumed to be independently and 
identically distributed IID. Therefore, it seems reasonable to use the BDS test as a specification test 
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by applying it to the fitted residuals from the concerned model, i.e., test the null hypothesis that 

 is IID. This test has a good power for testing misspecification of ARCH-type models. 

Unexpected result was found for the S&P 500. The respective model is inconsistent under Gaussian 
and GTD errors. Did the estimation go wrong? If so, then why the estimated EGARCH model for the 
Nikkei 225 returns is consistent? It is possible to say that the EGARCH model is not perfectly adaptable 
to fit the S&P 500 return. To verify this hypothesis, the same consistency test is carried on the second 
best model for the S&P 500 return, which is the IGARCH model (Table 4). 

 
Table 4. Consistent models for the S&P 500 return 

 Srt Srt 
Model type IGARCH IGARCH 
Orders (p, q) (1, 1) (1, 1) 
Distribution Normal GTD 
 - 1.99 
ψ - 4.79 
SIC -15808.44 -15851.68 

 
All estimated models under the GTD have outperformed those estimated under the normal 

distribution, except for the CAC 40 return due to insignificant parameter ψ. Moreover, we notice that 

the GTD parameter  is close to 2, in this case the GTD is nested by the standard t-distribution STD. 

Wald coefficient test and the log-likelihood ratio test have both accepted the null hypothesis  = 2 
for all models. The volatility in-mean specification did not improve any of the estimated models. The 
Nikkei 225 return is affected by the holiday effect (Table 5). 

 
Table 5. Results summary under STD errors 

 Srt Nrt Crt 
Model type IGARCH EGARCH* EGARCH 
Orders (p, q) (1, 1) (1, 1) (1, 1) 
Degree of 
freedom 

9.3905 11.064 18.837 
SIC -15859.50 -14207.09 -15096.45 

 
    * This model includes the holiday coefficient. 

 
Next, a standard efficiency test is conducted. This test was conducted frequently in the 

literature Pagan & Schwert (1990) and it consists of estimating the following model using OLS: 
 

   (7) 

If the model is correctly specified and if indeed:   (the conditional volatility of 

the index return equals ht), one should expect to have “a” and “b” equal zero and unity respectively. 
Of course, in practice the values for ht are subject to estimation error, resulting in a standard errors-
in-variables problem and a downward bias in the regression estimate for b. The use of such test is 
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justified to the extent that the squared returns provide an unbiased estimator of the underlying latent 
volatility. The joint null hypothesis {a = 0 and b = 1} is rejected for the S&P 500. However, H0 is 
accepted when conducting the test on volatility derived from GARCH models instead of IGARCH. 

The R2 is often interpreted as a simple gauge of the degree of predictability in the volatility 
process; and hence of the potential economic significance of the volatility forecasts. Its use as a guide 
to the accuracy of the volatility forecasts, however, is problematic. As discussed in Anderson & 
Bollerslev (1998), the realized squared returns are poor estimators of daily volatility due to the large 
idiosyncratic component in daily returns. Consequently, it’s insignificant to interpret R2 unless we 
have a benchmark for the expected value under the hypothesis of correct model specification. The 

(true or theoretical) population R2 from the OLS regression under H0 equals  , ht is 

obtained from the estimated model (Table 6). 
 

Table 6. Theoretical vs. reported R2 

Stock index S&P 500 Nikkei 225 CAC 40 
Theoretical 
R2 

0.14 0.10 0.20 
Reported R2   0.09 0.09 0.20 

 
This form of R2 can be written as a function of ARCH model parameters (in case of GARCH (1, 1) 

model, the value of R2 is given by:  ), since the volatility ht is a non-linear function 

of rt. Var(ht) is a function of rt because it is derived from the estimated GARCH model and it’s a direct 
result given by the ARCH-type models. 

Besides, with the estimated volatility ht, the population value of R2 is below this upper bound. 
Therefore, a low R2 is not an anomaly, yet a direct implication of ARCH models. Without a doubt, low 
R2 largely reflects the inherent noise in the daily squared returns as a measure for the underlying 
latent volatility factor. 

The main handicap in this procedure is that we are trying to compare volatility to simple daily 
squared returns, in other words the evaluation method is not adapted to the type of data. Indeed, 
the daily volatility cannot be represented by the simple square of the observed daily return because 
the variability in one day is the result of the return’s change over the whole day. Anderson & 
Bollerslev (1998) have demonstrated that the volatility can explain much better the daily cumulative 
5-minute squared returns (or continuous return) represented by the ex-post daily sample variance, 

i.e.,   (288 observations for each day). Moreover, if the time 

interval of the returns goes smaller than 5 minutes, the forecast becomes better because the ex-post 
daily sample variance approaches the true daily sample variance. 

 
Forecasting 

The one-step-ahead volatility forecasts are computed based on the estimated model for each 
stock index return relative to the out-of-sample period. 
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For  the  IGARCH(1,  1)  model,  the  one-step-ahead  volatility  forecast  ht+1*   is computed as: 

   (8) 

 
For the EGARCH(1, 1) model, the one-step-ahead volatility forecast is: 
 

   (9) 

 
The out-of-sample  realized  squared  returns  (from  January  1st,  2006  until September 15th, 

2006) are once again regressed against a constant and the one-step-ahead volatility forecasts. The 
obtained coefficients of multiple determinations R2 are reported in Table 7. 

 
Table 7. Out-of-sample R2 

Stock index S&P 500 Nikkei 225 CAC 40 
Estimated 
model 

Theoretical 
R2 

0.065 0.100 0.193 
Reported R2 0.013 0.035 0.104 

Same  model  
under Normal 
distribution 

Theoretical 
R2 

0.072 0.110 0.190 
Reported R2 0.007 0.028 0.098 

Rate of improvement 85% 25% 6% 
 

The above results, however, does not satisfy our expectation although the forecasting power 
was improved under the generalized t-distribution. Researchers who studied ARCH models usually 
accept the idea that the poor forecasting power of these models is due to their type. The coefficient 
of determination is computed for an out-of- sample of 8 months and half, which is a long period. So 
to check the effect of the forecast horizon on the forecasting power of our models, R2 is computed 
for the first month, and each time we increase the sample by one month and compute the R2 again 
until we reach the end of the out-of-sample (Table 8). 

 
Table 8: Out-of-sample R2 fluctuation 
 

R2 fluctuation S&P 500 Nikkei 225 CAC 40 
1/1/06 → 31/1/06 0.299 0.003 0.096 
1/1/06 → 28/2/06 0.260 0.002 0.0003 
1/1/06 → 31/3/06 0.068 0.027 0.0005 
1/1/06 → 30/4/06 0.068 0.049 0.003 
1/1/06 → 31/5/06 0.003 0.033 0.178 
1/1/06 → 30/6/06 0.016 0.016 0.114 
1/1/06 → 31/7/06 0.013 0.022 0.103 
1/1/06 → 31/8/06 0.012 0.030 0.099 
1/1/06 → 15/9/06 0.013 0.035 0.104 

 
Except for the S&P 500 model, the forecast horizon does not have a significant effect on the 

coefficient of determination on the short run. An ARCH-type process is stochastic; and the volatility 
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is generated from the return itself and not from other stochastic exogenous variable. Hence, the 
predictability of the ARCH-type models is weak but improved under the generalized t-distribution. 

 
Simulations 

The objective of the conducted simulations is to verify whether ARCH models are really 
adequate to describe index returns or not, so a special care is given to the random number generator 
RNG which is the core part of Monte Carlo simulations. The RNG used in these simulations is based 
on the Mersenne-Twister algorithm developed by Matsumoto & Nishimura (1998) to generate 
uniformly distributed random numbers with a huge period of 219937-1. Marsaglia’s  (2000) “ziggurat  
method” could  next  be  applied  on  the  uniform  random numbers to obtain normally or any other 
distribution random numbers. The ziggurat method consists of generating random points (x, y) 
uniformly distributed in the plane, and rejects any of them that do not fall under the curve of the 
desired probability density function; the remaining x’s form the desired distribution random 
numbers. 

Besides the ziggurat method, another more powerful method is used here. It is based on the 
inverse cumulative distribution function. The cumulative distribution function or CDF of any 
probability distribution is a continuous ascending function which accepts any real x and steadily 
increases from 0 to 1. Denote F(x) the CDF of the desired distribution. The idea behind using the 
inverse CDF or F–1(y), with F–1(y): [0, 1] →]-∞, +∞ [, is that if we generate uniformly distributed 
random numbers on the interval [0, 1], the transformed numbers through F–1(y) are randomly 
distributed on the interval ]-∞, +∞[, they correspond to the used distribution random numbers. The 
CDF of the generalized t-distribution is given by: 

 

   (10) 

 
Where: S(x) is the sign function, and Iz(a, b) is the regularized incomplete beta function that 

satisfies: , with:  is the incomplete beta 

function. Note that . Proof is provided in appendix (2). 

F–1(y)  can  be  derived  only  when  knowing  the  inverse  of  the  regularized incomplete beta 
function. Fortunately, some algorithms are designed to find solutions of this special function. Since 
Iz(a, b) is monotone, it is still possible to find z that satisfies s = Iz(a, b), in this case z = Is

-1(a,b). One 
good algorithm is the Newton’s method.  

The starting value which forms the state of the RNG, called seed, is set by the clock of the 
computer at the time the program was run. 

For each stock index return model, the estimated coefficients and distribution are used to 
generate 10,000 paths or realizations; each path has the same sample size as the corresponding 
studied return. Afterward, the coefficients are re-estimated under the same model type and 
distribution for all simulated paths to check the consistence of the abovementioned methodology. 
The Wald coefficients and log-likelihood ratio tests are next  applied  on  the  re-estimated  
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coefficients  for  every  path  to  compare  similarities between the original and the re-estimated 
models. The rates of acceptance of the null hypothesis that the models for the simulated paths are 
the same as the initial model are presented in Table 9. 
Table 9. Simulated paths acceptance rate 

H0 S&P 500 Nikkei 225* CAC 40 
Wald test 80.8% 92.7% 92.4% 
LL ratio test 77.6% 96.0% 94.9% 

 
* The rate of acceptance is non-including the holiday effect. When including the 
holiday effect it becomes 60% and 63%. 
 

Conclusions 
Risk modeling has known an impressive development since the first ARCH paper appeared. The 

trade-off between risk and return, where risk is generally measured by the volatility, is a decisive 
element in financial theories. In fact, accurate measures and good forecasts of future volatility are 
critical for the implantation and evaluation of asset pricing theories and hedging strategies. Hence, a 
thorough understanding of the determinants of the volatility process is crucial for issues for the 
functioning of markets. 

However, it is still believed that the normal distribution is the best choice to use with ARCH-
type models because it can explain the behavior of stock index risk and because it’s the easiest one 
to model the volatility of any given financial asset, although all performed normality tests have 
strongly rejected the hypothesis of normal returns. 

This is out of surprise, because it is well known that the distribution of a given financial time 
series has thicker tails than the normal, and the use of the normal distribution with ARCH-type models 
offer a fatter-tail conditional distribution. That’s why researchers did not give much interest on the 
used distribution, and have focused their efforts in search for new forms of the volatility equation 
inside the ARCH-type model to capture newly discovered behavior. However, the tails of the 
conditional normal distribution are not thick enough to describe the process, and the distribution is 
not fully adaptable to the type of data. 

The generalized t-distribution GTD was found to outperform the normal distribution in 
modeling the stock index volatility. It nests many other distributions, and it is more powerful in 
approximating the process’s behavior. Hence, it is preferable to avoid the normal choice of the 
normal density and to choose a more adapted one. 

Although  the  forecasting  power  represented  by  the  R2  of the  ex-post  model 

 is rather due to the nature of ARCH models and to the idiosyncratic components in 

daily returns, in the present study the forecasting power was improved by using daily returns with 
different distribution. Moreover, except for the S&P 500 model, the forecast horizon does not have 
a significant effect on the forecasting power on the short run. 

Monte Carlo simulations have confirmed the common belief that stock index returns are better 
explained by ARCH-type models more than any other model. 
 

 

2

t t tr a b h v= +  +
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Appendices 
1. Stationarity condition of APARCH model under GTD 

The stationarity condition of the APARCH model is: 
 

The quantity  is computed as follow: 

 

The GTD is symmetric with mean zero, hence: , 

therefore:
  

  

 
Using Gradshteyn & Ryzhik (2007), p. 341, § 3.241.4: 

 , under the conditions that n > 0, p > -1 and         

(k.n – p)> 1, we obtain: 
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2. Cumulative distribution function of the GTD 
 

The CDF of the generalized t-distribution GTD is given by:   

Where: S(x) is the sign function: . Note that: . 

Let’s first compute the integral  when x > 0. 

By posing , we obtain: , now replace dt with dX. Knowing that

, we obtain . 

Hence; 

 
 
Replacing this result into the CDF, we obtain: 

 

Iz(a, b) is the regularized incomplete beta function that satisfies: , 

with:  is the incomplete beta function, with a > 0 and b > 0. 

 
 
 
 

i Kanzler  (1999). Very fast and correctly sized estimation of the BDS statistic. Unpublished manuscript, Department of 

Economics, University of Oxford. Retrieved from: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=151669. 
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