ISSN: 2225-8329
Open access
The study aims to highlight the future research directions and global research trends of applying artificial intelligence (AI) in Human Resources (AI) Using Bibliometric Analysis in the last three decades (1996–2024). Using performance analysis and scientific mapping, the research uses bibliometric analysis to investigate co-authorship, co-occurrence, citation, bibliographic coupling, and co-citation analysis in 99 articles taken from the Scopus database. The analysis looked at the quantity of scientific publications, the most prolific writers, the most important papers, nations, and organizations. The study used VOSviewer as a science mapping and performance analysis tool. The most productive year was 2023 with 34 publications and the most impactful institute and countries are the Essec Business School in France, and the country is the United States, respectively. Similarly, the most influential journal is “California Management Review”, furthermore, the most cited article is “Artificial intelligence in human resources management: Challenges and A path forward”. The authors also identified four thematic clusters of Research on Artificial Intelligence in Human Resources, the four theme groupings are Artificial Intelligence, Human Resource Management, Human Capital Complementarity, and AI Capability Framework. It presents academic direction and information about the current state and future study in the field of artificial intelligence literature in human resources. This study enhances the theoretical comprehension of AI's impact on HR by providing a thorough examination of worldwide patterns and real-world implementations. It promotes the use of AI frameworks in line with strategic HR objectives.
Abdeldayem, M. M., & Aldulaimi, S. H. (2020). Trends and opportunities of artificial intelligence in human resource management: Aspirations for public sector in Bahrain. International Journal of Scientific and Technology Research, 9(1), 3867-3871.
Alkoud, S., & Qatamin, L. (2023a). The Benefits of Employing Global Virtual Teams in International Business. International Business, 13(6), 2088-2101.? Available at: http://dx.doi.org/10.6007/IJARBSS/v13-i6/17169
Alkoud, S., & Qatamin, L. (2023b). Hybrid Work in International Business: Challenges and Opportunities in light of Dual Factor Theory. Social Sciences, 13(7), 1354-1371.? Available at: http://dx.doi.org/10.6007/IJARBSS/v13-i7/17314
Alkoud, S., Zainudin, D., & Sarif, S. M. (2023a). Challenges, Barriers, and Obstacles Facing Virtual Teams: a Conceptual Study. Sciences, 13(4), 1473-1487.? Available at: http://dx.doi.org/10.6007/IJARBSS/v13-i4/16723
Alkoud, S., Zainudin, D., & Sarif, S. M. (2023b). Exploring the Roles of Social Presence Practices in Enhancing Virtual Teams Performance in the Higher Education Sector in Malaysia. International Journal of Academic Research in Business and Social Sciences, 13(4), 1462-1473.? Available at: http://dx.doi.org/10.6007/IJARBSS/v13-i4/16722
Andreou, A. S., & Zombanakis, G. A. (2011). Financial versus human resources in the Greek–Turkish arms race 10 years on: A forecasting investigation using artificial neural networks. Defence and Peace Economics, 22(4), 459-469.? Available at: https://doi.org/10.1080/10242694.2010.539858
Andreoua, A. S., & Zombanakisb, G. A. (2000). Financial versus human resources in the Greek?Turkish arms race: A forecasting investigation using artificial neural networks. Defence and Peace Economics, 11(2), 403–426. Available at: https://doi-org.ezlib.iium.edu.my/10.1080/10430710008404956
Arslan, A., Cooper, C., Khan, Z., Golgeci, I., & Ali, I. (2022). Artificial intelligence and human workers interaction at team level: a conceptual assessment of the challenges and potential HRM strategies. International Journal of Manpower, 43(1), 75-88.? Available at: https://doi.org/10.1108/IJM-01-2021-0052
Askenazy, P., Thesmar, D., and Thoenig, M. (2006). On the relation between organizational practices and new technologies: The role of (time based) competition. The Economic Journal 116(508): 128–154. Available at: https://doi.org/10.1111/j.1468-0297.2006.01050.x
Badicu, A. (2022). Artificial Intelligence and Human Resources Management?: A Bibliometric Analysis Artificial Intelligence and Human Resources Management?: A Bibliometric Analysis. Applied Artificial Intelligence, 36(01). Available at: https://doi.org/10.1080/08839514.2022.2145631
Baker, H. K., Kumar, S., & Pandey, N. (2020). A bibliometric analysis of Managerial Finance: A retrospective. Managerial Finance, 46(11), 1495–1517. Available at: https://doi.org/10.1108/MF-06-2019-0277
Baker, H. K., Kumar, S., & Pandey, N. (2021). Forty years of the Journal of Futures Markets: A bibliometric overview. Journal of Futures Markets. Available at: doi: 10.1002/fut.22211 (in press).
Basu, S., Majumdar, B., Mukherjee, K., Munjal, S., & Palaksha, C. (2023). Artificial intelligence–HRM interactions and outcomes: A systematic review and causal configurational explanation. Human Resource Management Review, 33(1), 100893. Available at: https://doi.org/10.1016/j.hrmr.2022.100893
Ben Sedrine, S., Bouderbala, A., & Nasraoui, H. (2020). Leadership style effect on virtual team efficiency: trust, operational cohesion and media richness roles. Journal of Management Development, 40(5), 365–388. Available at: https://doi.org/10.1108/JMD-10-2018-0289
Bloom, N., Sadun, R., and Reenen, J. (2012). Americans do IT better: US multinational and the productivity miracle. The American Economic Review 102(1): 167–201. Available at: DOI: 10.1257/aer.102.1.167
Cam, A., Chui, M., & Hall, B. (2019). Global AI survey: AI proves its worth, but few scale impact. McKinsey & Co. Available at: https://www.mckinsey.com/featured-insights/ artificial-intelligence/global-ai-survey-ai-proves-itsworth- butfew-scale-impact
Choudhury, P., Starr, E., & Agarwal, R. (2020). Machine learning and human capital complementarities: Experimental evidence on bias mitigation. Strategic Management Journal, 41(8), 1381-1411.? Available at: https://doi.org/10.1002/smj.3152
Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899.? Available at: https://doi.org/10.1016/j.hrmr.2022.100899
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133(March), 285–296. Available at: https://doi.org/10.1016/j.jbusres.2021.04.070
Gao, P., Meng, F., Mata, M.N., Martins, J.M., Iqbal, S., Correia, A.B., Dantas, R.M., Waheed, A., Rita, X. and Farrukh, M. (2021). Trends and future research in electronic marketing: a bibliometric analysis of twenty years. Journal of Theoretical and Applied Electronic Commerce Research, Vol. 16 No. 5, pp. 1667-1679. Available at: https://doi.org/10.3390/jtaer16050094
Goyal, K. and Kumar, S. (2021). Financial literacy: a systematic review and bibliometric analysis. International Journal of Consumer Studies, Vol. 45 No. 1, pp. 80-105. Available at: https://doi.org/10.1111/ijcs.12605
Groff, M. L., Offringa, M., Emdin, A., Mahood, Q., Parkin, P.C. and Cohen, E. (2020), “Publication trends of pediatric and adult randomized controlled trials in general medical journals, 2005-2018: a citation analysis”, Children, Vol. 7 No. 12, p. 293. Available at: https://doi.org/10.1111/ijcs.12605
Grzonka, D., Jakobik, A., Ko?odziej, J., & Pllana, S. (2018). Using a multi-agent system and artificial intelligence for monitoring and improving the cloud performance and security. Future Generation Computer Systems, 86, 1106–1117. Available at: https://doi.org/10.1016/j.future.2017.05.046.
Hossain, M. R., Akhter, F., and Sultana, M. M. (2022), “SMEs in covid-19 crisis and combating strategies: a systematic literature review (SLR) and A case from emerging economy”, Operations Research Perspectives, Vol. 9, 100222. Available at: doi:10.1016/j.orp.2022.100222.
Huang, L. C., Wu, P., Kuo, R. J., & Huang, H. C. (2001). A neural network modelling on human resource talent selection. International Journal of Human Resources Development and Management, 1(2-4), 206-219.? Available at: https://doi.org/10.1504/IJHRDM.2001.001006
Jia, Q., Guo, Y., Li, R., Li, Y. and Chen, Y. (2018). A conceptual artificial intelligence application framework in human resource management”, International Consortium for Electronic Business, Scopus, in Chang, F.-K., Li, E.Y. and Li, E.Y. (Eds), Proceedings of the International Conference on Electronic Business (ICEB), Vol. 2018, pp. 106-114. Available at: https://www.scopus.com/inward/record.uri?eid52-s2.0-85061925662&partnerID540&md555b8c7463a6202415e7d4c010ecee3ef0.
Joamets, K., & Chochia, A. (2020). Artificial intelligence and its impact on labour relations in Estonia. Slovak Journal of Political Sciences, 20(2), 255-277.? Available at: https://sjps.fsvucm.sk/index.php/sjps/article/view/136
Karatop, B., Kubat, C. and Uygun, €O. (2015), “Talent management in manufacturing system using fuzzy logic approach”, Computers and Industrial Engineering, Vol. 86, pp. 127-136. Available at: doi: 10.1016/j. cie.2014.09.015.
Kaushal, N., & Ghalawat, S. (2023). Research perspective of artificial intelligence and HRM: a bibliometric study. International Journal of Business Innovation and Research, 31(2), 168-196.? Available at: https://doi.org/10.1504/IJBIR.2023.131432
Kong, H., Y. Yuan, Y. Baruch, N. Bu, X. Jiang, and K. Wang. 2021. Influences of Artificial Intelligence (AI) awareness on career competency and job burnout. International Journal of Contemporary Hospitality Management 33 (2):717–34. Available at: doi:10.1108/IJCHM-07-2020-0789.
Kshetri, N. (2020). Evolving uses of artificial intelligence in human resource management in emerging economies in the global South: some preliminary evidence. Management Research Review, 44(7), 970–990. Available at: https://doi.org/10.1108/MRR-03-2020-0168
Lawler, J. J., & Elliot, R. (1996). Artificial Intelligence in HRM: An Experimental Study of an Expert System. Journal of Management, 22(1), 85-111. Available at: https://doi-org.ezlib.iium.edu.my/10.1177/014920639602200104.
Lucia-Casademunt, A. M., Ariza-Montes, A., and Becerra-Alonso, D. (2013). Exploring emotional involvement in workplace by applying artificial neural networks: European study. Actual Problems of Economics, Scopus, Vol. 143 No. 5, pp. 376-385.
Madakam, S., Holmukhe, M., & Jaiswal, D. K. (2019). The future digital workforce: Robotic process automation (RPA). Journal of Information Systems and Technology Management, 16(1), 1–17. Available at: https://doi.org/10.4301/ S1807-1775201916001.
Melancon, M. (2018). The USPTO's Sisyphean Plan: Increasing Manpower Will Not Match Artificial Intelligence's Inventive Capabilities. Tex. L. Rev. 96, (4), 873 – 889.
Michailidis, M. P. 2018. The challenges of AI and blockchain on HR recruiting practices. Cyprus Review 30 (2):169–80.
Mishra, D., Gunasekaran, A., Papadopoulos, T. and Dubey, R. (2018). Supply chain performance measures and metrics: a bibliometric study. Benchmarking: An International Journal, Vol. 25 No. 3, pp. 932-967. Available at: https://doi.org/10.1108/BIJ-08-2017-0224
Mohamed, S. A., Mahmoud, M. A., Mahdi, M. N., & Mostafa, S. A. (2022). Improving efficiency and effectiveness of robotic process automation in human resource management. Sustainability, 14(7), 3920.? Available at: https://doi.org/10.3390/su14073920
Mysirlaki, S., & Paraskeva, F. (2020). Emotional intelligence and transformational leadership in virtual teams: lessons from MMOGs. Leadership and Organization Development Journal, 41(4), 551–566. Available at: https://doi.org/10.1108/LODJ-01-2019-0035
Odugbesan, J. A., Aghazadeh, S., Al Qaralleh, R. E., & Sogeke, O. S. (2023). Green talent management and employees’ innovative work behavior: the roles of artificial intelligence and transformational leadership. Journal of knowledge management, 27(3), 696-716.? Available at: https://doi.org/10.1108/JKM-08-2021-0601
Oswald, F.L., Behrend, T.S., Putka, D.J. and Sinar, E. (2020), “Big data in industrial-organizational Psychology and human resource management: forward progress for organizational research and practice”, Annual Review of Organizational Psychology and Organizational Behavior,Scopus, Vol. 7, pp. 505-533. Available at: doi: 10.1146/annurev-orgpsych-032117-104553.
Paesano, A. (2021). Artificial Intelligence and creative activities inside organizational behavior. International Journal of Organizational Analysis. ahead-of-p(ahead-of-print. Available at: doi: 10.1108/ IJOA-09-2020-2421.
Pan, Y., & Froese, F. J. (2023). An interdisciplinary review of AI and HRM: Challenges and future directions. Human Resource Management Review, 33(1), 100924.? Available at: https://doi.org/10.1016/j.hrmr.2022.100924
Pan, Y., F. Froese, N. Liu, Y. Hu, and M. Ye. (2022). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. International Journal of Human Resource Management 33 (6):1125–47. Available at: doi:10.1080/09585192.2021.1879206.
Pillai, R. (2020). Adoption of Artificial Intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking: An International Journal 27 (9):2599–629. Available at: doi:10. 1108/BIJ-04-2020-0186.
Popkova, E. G., & Sergi, B. S. (2020). Human capital and AI in industry 4.0. Convergence and divergence in social entrepreneurship in Russia. Journal of Intellectual Capital, 21(4), 565-581.? Available at: https://doi.org/10.1108/JIC-09-2019-0224
Prikshat, V., Islam, M., Patel, P., Malik, A., Budhwar, P., & Gupta, S. (2023). AI-Augmented HRM: Literature review and a proposed multilevel framework for future research. Technological Forecasting and Social Change, 193, 122645.? Available at: https://doi.org/10.1016/j.techfore.2023.122645
Qamar, Y., Agrawal, R. K., Samad, T. A., & Chiappetta Jabbour, C. J. (2021). When technology meets people: the interplay of artificial intelligence and human resource management. Journal of Enterprise Information Management, 34(5), 1339–1370. Available at: https://doi.org/10.1108/JEIM-11-2020-0436
Qatamin, L., & Alkoud, S. (2023b). Concept, Theory, and Classification of Electronic-HRM: A Conceptual Study.? Available at: http://dx.doi.org/10.6007/IJARBSS/v13-i7/17173
Rodgers, W., Murray, J. M., Stefanidis, A., Degbey, W. Y., & Tarba, S. Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Human Resource Management Review, 33(1), 100925.? Available at: https://doi.org/10.1016/j.hrmr.2022.100925
Rykun, E. (2019). Artificial Intelligence in HR Management–What Can We Expect? The Boss Magazine. Available at: https://thebossmagazine.com/ai-hr-management/ .
Seal, A. (2019). The most interesting AI statistics of 2019. Available at: https://www.vxchnge.com/blog/ai-statistics.
Sexton, R. S., McMurtrey, S., Michalopoulos, J. O., and Smith, A. M. (2005). Employee turnover: a neural network solution. Computers and Operations Research, Vol. 32 No. 10, pp. 2635-2651. Available at: https://doi.org/10.1016/j.cor.2004.06.022
Strohmeier, S. and Piazza, F. (2013), “Domain driven data mining in human resource management: a review of current research”, Expert Systems with Applications, Vol. 40 No. 7, pp. 2410-2420. Available at: doi: 10.1016/j.eswa.2012.10.059.
Strohmeier, S., and Piazza, F. (2015). Artificial intelligence techniques in human resource management—a conceptual exploration. Intelligent Systems Reference Library, Springer Science and Business Media Deutschland GmbH, Scopus, Vol. 87, p. 172. Available at: doi: 10.1007/978-3-319- 17906-3_7.
Suominen, A., Li, Y., Youtie, J., and Shapira, P. (2016). A bibliometric analysis of the development of next generation active nanotechnologies. Journal of Nanoparticle Research, Vol. 18 No. 9, pp. 1-18.
Suseno, Y., Chang, C., Hudik, M., & Fang, E. S. (2022). Beliefs, anxiety and change readiness for artificial intelligence adoption among human resource managers: the moderating role of high-performance work systems. The International Journal of human resource management, 33(6), 1209-1236.?
Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15-42.? Available at: https://doi.org/10.1177/0008125619867910
Tunger, D., & Eulerich, M. (2018). Bibliometric analysis of corporate governance research in German-speaking countries: Applying bibliometrics to business research using a custom-made database. Scientometrics, 117(3), 2041–2059.
Vinichenko, M. V., Makushkin, S. A., Rybakova, M. V., ?hulanova, O. L., Kuznetsova, I. V., & Lobacheva, A. S. (2019). Using natural and artificial intelligence in the talent management system. International Journal of Recent Technology and Engineering, 8(3), 7417-7423.?
Votto, A. M., Valecha, R., Najafirad, P., & Rao, H. R. (2021). Artificial intelligence in tactical human resource management: A systematic literature review. International Journal of Information Management Data Insights, 1(2), 100047.? Available at: https://doi.org/10.1016/j.jjimei.2021.100047
Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. The international journal of human resource management, 33(6), 1237-1266.?
Wang, X. L., Lei, N., & Hou, Y. Z. (2020). How does human resource department's client relationship management affect sustainable enterprise performance-in the context of artificial intelligence?. International Journal of Technology Management, 84(1-2), 50-69.? Available at: https://doi.org/10.1504/IJTM.2020.112139
Wong, L. W., Leong, L. Y., Hew, J. J., Tan, G. W. H., & Ooi, K. B. (2020). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. International Journal of Information Management, 52, Article No. 101997. Available at: https://doi.org/10.1016/j.ijinfomgt.2019.08.005.
Xin, O. K., Wider, W., & Ling, L. K. (2022). Human Resource Artificial Intelligence Implementation and Organizational Performance in Malaysia. Asia-Pacific Social Science Review, 22(3), 18–37.
Xin, O. K., Wider, W., & Ling, L. K. (2022). Human Resource Artificial Intelligence Implementation and Organizational Performance in Malaysia. Asia-Pacific Social Science Review, 22(3), 18–37.
Zhang, H., Yuan, W., and Jiang, H. (2012), “Performance evaluation on human resource management of China’s commercial banks based on improved Bp neural networks”, International Journal of Advancements in Computing Technology, Vol. 4 No. 11, pp. 304-310. Available at: doi: 10.4156/ijact.vol4. issue11.32.
Zupic, I., and Cater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, Vol. 18 No. 3, pp. 429-472. Available at: https://doi.org/10.1177/1094428114562629
Alkoud, S., Majeed, I., Zainudin, D., & Sarif, S. M. (2024). Future Research Directions and Global Research Trends of Applying Artificial Intelligence in Human Resources Using Bibliometric Analysis. International Journal of Academic Research in Accounting, Finance and Management Sciences, 14(4), 1354–1377.
Copyright: © 2024 The Author(s)
Published by HRMARS (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode