ISSN: 2222-6990
Open access
Th paperwork aims to examine the meaning allude to Malay art concept through mathematical aspects and thinking. It can be seen on carvings, weaving, painting, architecture and textile. Pattern and motifs in Malay art works are rich with mathematical values which can be seen on any geometric designs. This is a qualitative research that analyses symmetry. Art designs was analysed in formalistic context in order to explain symmetry concepts that exist in ethnomathematics. Written and visualised data are gathered and collected via documentation, recording and observation. The findings of this study showed that the inter-relationships between art and mathematic cannot be denied through the beauty of art works as well as its beauty in mathematical aspects. The implication of this research is to view and see art not only from the angle of arts appreciation, but can be expanded to various philosophical perspectives especially in mathematical aspects.
Ismail, A. R. (2014). Kesenian Dan Fabrik Melayu: Alam Sebagai Motif Kraf Tangan Fabrik Melayu tradisi. Shah Alam: Penerbit Universiti Teknologi Mara.
Jusoh, A., Sauman, Y., & Ramli, R. (2011). Gendang Gangsa di Asia Tenggara: Tinjauan terhadap Motif Berunsur Geometri. SARI: Jurnal Alam dan Tamadun Melayu, 29 (2). pp. 21-44. ISSN 0127-2721.
Hussin, H. (2006).Motif Alam Dalam Batik Dan Songket Melayu. Kuala Lumpur: Perpustakaan Negara Malaysia.
Said, I., & Saifuddin, A. (2001).Spesis-Spesis Kayu Dalaman Ukiran Melayu. Skudai: UTM Press.
Ahmad, J., & Idris, S. R. (1996). Ukiran Melayu.Petaling Jaya: Penerbit Pinang.
Ismail, M. R., Tarmizi, R., Ayub, F., Yusof, N., & Kartini, S. (2012). Seni Warisan Melayu: Suatu Manifestasi Etnomatematik. Rampaian Etnomatematik. Universiti Putra Malaysia: Institut Penyelidikan Matematik.
Ismail, M. R. (2004).Etnomatematik. Matematik Merentas Tamadun. Falsafah Pengajian Sejarah Matematik. Kuala Lumpur: Dewan Bahasa Dan Pustaka.
Rashid, M. S. A. (2009).Cadangan Kaedah Kod ’S’ Bagi Penamaan Dan Penentuan Motif Bunga Ukiran Melayu Dalam Proses Inventori. Kertas Kerja Ini Telah Dibentangkan Di Persidangan Antarabangsa Kesenian 2009 - Seni Dekorasi : Pelestarian & Pembangunan, Anjuran Akademi Pengajian Melayu Universiti Malaya, Hotel Singgahsana, Petaling Jaya.P.1-13.
Ismail, M. R., & Atan, K. A.(2010). Mathematics in the Malay world Prior to the Arrival of Western Mathematics. International Conference on Mathematics Education Research (ICMER). P.729–734.
Aziz, N. M. A., Embong, R. (2016). Mathematical Transformations and Songket
Patterns.European Science publishing Ltd.
Nordin, N. (2010). Pengaruh Reka Bentuk Corak Dan Motif Dalam Seni Ukir Melayu.
Yatim, O. (2000).Mengukir Kegemilangan Lalu: Biografi Wan Su Othman.
Penerima Anugerah Seni Negara. (1997). Kuala Lumpur: Kementerian Kebudayaan, Kesenian Dan Pelancongan
Basaree, R. O. (2016).Simbiosis: Keharmonian Seni Tradisional Dan Seni Digital
Kontemporari. Balai Seni Visual Negara. Kuala Lumpur
Basaree, R. O. (2008). The Frieze Pattern in Malay Wood Carving. Jurnal Perintis
Pendidikan. Shah Alam: Universiti Teknologi, 43-47.
Ismail, S. Z. (2018). Reka Bentuk Kraf Tangan Melayu Tradisi. Kuala Lumpur:
Dewan Bahasa Dan Pustaka.
Zamri, S. N. Z., Sarmin, N. H., Adam, N. A., & Sani, M. A.(2014). Modelling Of Tudung Saji Weaving Using Elements in Group Theory. Johor: UTM Press. Jurnal Teknologi 1159-64, 70:5.
Anuwar, T. (2013).Falsafah Etnomatematik. Makalah Dibentangkan Di Seminar Ethnosains Akademi Sains Islam Malaysia (ASASI) Ke-2.Pusat Dialog Peradaban. Petaling Jaya: Universiti Malaya.P.1-4.
In-Text Citation: (Abd Rahim, Samsudin, & Husain, 2020)
To Cite this Article: Abd Rahim, R. S@., Samsudin, M. R., & Husain, H. (2020). Symmetrical Design Analysis of Malay Arts in Ethnomathematics Context. International Journal of Academic Research in Business and Social Sciences. 10(9), 1047-1060.
Copyright: © 2020 The Author(s)
Published by HRMARS (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode