Bagozzi, R. P., & Yi, Y. (1989). The degree of intention information as a moderator of the attitude-behavior relationship. Social Psychology Quarterly, 52(4), 279-299
Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to casual modeling: personal computer adoption ans use as an Illustration.
Barlett, M. S. (1950). Extensions of Quenouille's test for autoregressive scheme. J. Roy. Statist. Soc., B, 12, 108-115.
Bentler, P. (1990). Comparative fit indexes in structural models. Psychological bulletin
Bentler, P., & Bonett, D. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological bulletin, 88(3),588-606.
Bollen, K. (1989). Structural Equations with latent variables. New York: Wiley.
Bontis, N., Booker, L. D., & Serenko, A. (2007). The mediating effect of organizational reputation on customer loyalty and service recommendation in the banking industry. Management decision, 45(9), 1426-1445.
Bowerman, B. L., & O'connell, R. T. (1990). Linear statistical models: An applied approach. Brooks/Cole.
Chin, W. W. (1980). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
Chin, W. W. (2010). How to write up and report PLS analyses. In Handbook of partial least squares (pp. 655-690). Springer, Berlin, Heidelberg
Chou, C. P., & Bentler, P. M. (1995). Estimates and teste in structrural equestion modeling: Conceps, issues and application. Thousand Oaks, CA: Sage. P. 37-54.
Cohen, J. (1983). The cost of dichotomization. Applied psychological measurement, 7(3), 249-253.
De Vaus, D. (2002). Analyzing social science data: 50 key problems in data analysis. Sage.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation model with unobservable variables and measurement error. Journal of Marketing Research 18 (1), 39-50.
Ghozali, H. I., Fuad, J., & Seti, M. (2005). Structural equation modeling. Program LISRAL 8.54. Semarang, Indonesia, Badan Penerbit University Diponegoro
Hair Jr, J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM) An emerging tool in business research. European Business Review, 26(2), 106-121.
Hair, J. F., Anderson, R. E., Black, W. B., & Tatham, R. L. (2010). Multivariate Data Analysis: Prentice Hall.
Hair, J. F., Anderson, R. E., Black, W. B., Babin, B., & Tatham, R. L.(2006). Multivariate Data Analysis. Auflage, Upper saddle river. (Seven, Ed.).
Hair, J. F., Anderson, R. E., Tatham, R. L. & Black, W. C. (1998). Multivariate Data Analysis (5th ed.), New Jersey, Prentice-Hall.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2012). Partial least squares: the better approach to structural equation modeling?. Long Range Planning, 45(5-6), 312-319.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2017). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long range planning, 46(1-2), 1-12.
Hughes, T. P., Bellwood, D. R., Baird, A. H., Brodie, J., Bruno, J. F., & Pandolfi, J. M. (2011). Shifting base-lines, declining coral cover, and the erosion of reef resilience: comment on Sweatman et al.(2011). Coral Reefs, 30(3), 653-660.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.
Kline, R. B. (2005). Principle and practice of structural equation modeling, 2nd edn Guilford Press, New York.
MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual review of psychology, 51(1), 201-226.
Mallinckrodt, B., Abraham, W. T., Wei, M., & Russell, D. W. (2006). Advances in testing the statistical significance of mediation effects. Journal of Counseling Psychology, 53(3), 372.
Menard, D. P., Rossum, D. V., Kar, S., & Quirion, R. (1995). Alteration of calcitonin gene related peptide and its receptor binding sites during the development of tolerance to ? and ? opioids. Canadian journal of physiology and pharmacology, 73(7), 1089-1095.
Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54(1), 17-24.
Myers, R. H., (1990). Classical and modern regression with applications (Vol. 2). Belmont, CA: Duxbury press.
O'brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & quantity, 41(5), 673-690.
Pallant, J. (2010). SPSS Survival Manual, 4th edn, Maidenhead.
Peterson, R. A., & Kim, Y. (2013). On the relationship between coefficient alpha and composite reliability. Journal of Applied Psychology, 98(1), 194.
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior research methods, 40(3), 879-891.
Ramayah, T., Kamel, R., & Oh M. S. (2011). Modeling users' acceptance of Internet banking in Malaysia. In E-adoption and Socio-Economic Impact: Emerging Infrastructure Effects by Sushil K. Sharma, IGI Global publisher, Chapter 1pp.1-23.
Sarstedt, M., Ringle, C. M., Henseler, J., & Hair, J. F. (2014). On the emancipation of PLS-SEM: A commentary on Rigdon (2012). Long range planning, 47(3), 154-160.
Sekaran, U. (2003). Research methods for business: A skill-building approach (4th ed.). Joh Wilwy & Sons.
Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate Statistics (5th ed). California State University. Northridge. Boston: Allyn and Bacon.