Journal Screenshot

International Journal of Academic Research in Economics and Management Sciences

Open Access Journal

ISSN: 2226-3624

Effect of Deposition Layer of Titanium Dioxide (TIO2) Thin Film as Photoanode For Economically Sustainable Dye-Sensitized Solar Cell (DSSC) Application

Nur Alfarina Pirdaus, Irfan Nazif Nordin Amini, Wan Abd Al Qadr Imad Wan Mohtar, Muhammad Azfar Shamil Abd Aziz, Nurfadzilah Ahmad

http://dx.doi.org/10.6007/IJAREMS/v12-i3/19238

Open access

For decades, silicon solar cells had been established as commercialized solar cell. However, silicon solar cells require high cost and tedious fabrication techniques that utilized chemical which may be toxic to the environment. In this case, dye-sensitized solar cell (DSSC) has gained recognition in these recent years due to its simple and low-cost fabrication technique by utilizing natural resources when compared to commercial silicon solar cells which are fully chemical-based synthesis. DSSC is a thin film solar cell typically consist of a thin layer of porous titanium dioxide (TiO2) coated on a transparent conductive oxide such as indium tin oxide (ITO) or fluorine-doped tin oxide (FTO), light-absorbing dye, counter electrode and electrolyte to regenerate the electron. In this study, the effects of TiO2 thin film thickness were analyzed to determine whether the thickness of TiO2 thin film has significant effect on the performance of the DSSC device. TiO2 in this study was synthesized using sol-gel method with titanium (IV) butoxide used as the precursor. Spin coating method was utilized to deposit the thin film layers. Analysis on the structural, morphology, optical and electrical properties of the TiO2 thin film using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Ultraviolet-visible Spectrophotometry (UV-Vis) and 2-Point Probe respectively. The results for XRD pattern identified the production of the amorphous phase of TiO2 structured thin films, with a tendency towards anatase phase at 25° (highest peak on 3 deposition layers). FESEM images demonstrate that the TiO2 thin film with 3 layers has more porous, agglomerated, and compact morphology than the other two deposition layers. The bandgap energy of TiO2 thin films calculated from Tauc plot based on UV-visible absorbance spectra were 2.24 eV, 2.13 eV, and 2.04 eV for 1, 2, and 3 deposition layers, respectively. These properties indicate that 3 deposition layers is the optimized deposition layer of TiO2 thin film for DSSC application which will ensure good absorption of dye molecules onto the semiconducting metal oxide layer. Further research and new findings on other components like dye, electrolyte and counter electrode also necessary to improve the efficiency and stability of DSSC for future commercialization potential which will be more economically sustainable.

Kumavat, P. P., Sonar, P., & D. S. Dalal, D. S. (2017). An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renewable & Sustainable Energy Reviews, 78, 1262-1287. https://doi.org/10.1016/j.rser.2017.05.011.
Liang, Y., Sun, S., Deng, T., Ding, H., Chen, W., & Chen, Y. (2018). The Preparation of TiO2 Film by the Sol-Gel Method and Evaluation of Its Self-Cleaning Property. Materials, 11(3), 450. [Online]. https://www.mdpi.com/1996-1944/11/3/450.
Kumar, S. et al. (2023). Recent development in two-dimensional material-based advanced photoanodes for high-performance dye-sensitized solar cells. Solar Energy, 249, 606-623. https://doi.org/10.1016/j.solener.2022.12.013.
Richhariya, G., Kumar, A., Tekasakul, P., & Gupta, B. (2017). Natural dyes for dye sensitized solar cell: A review. Renewable and Sustainable Energy Reviews, 69, 705-718. https://doi.org/10.1016/j.rser.2016.11.198.
Lal, M., Sharma, P., Ram, C. (2022). Synthesis and photocatalytic potential of Nd-doped TiO2 under UV and solar light irradiation using a sol-gel ultrasonication method. Results in Materials, 15, 100308. https://doi.org/10.1016/j.rinma.2022.100308.
Raguram, T., & Rajni, K. S. (2020). Influence of boron doping on the structural, spectral, optical and morphological properties of TiO2 nanoparticles synthesized by sol–gel technique for DSSC applications. Materials Today: Proceedings, 33, 2110-2115. https://doi.org/10.1016/j.matpr.2020.02.738.
Raguram, T., & Rajni, K. S. (2022). Synthesis and characterisation of Cu - Doped TiO2 nanoparticles for DSSC and photocatalytic applications. International Journal of Hydrogen Energy, 47(7), 4674-4689. https://doi.org/10.1016/j.ijhydene.2021.11.113.
Marien, C. B. D., Marchal, C., Koch, A., Robert, D., & Drogui, P. (2017). Sol-gel synthesis of TiO2 nanoparticles: effect of Pluronic P123 on particle's morphology and photocatalytic degradation of paraquat. Environmental Science and Pollution Research International, 24(14), 12582-12588. https://doi.org/10.1007/s11356-016-7681-2.
Soga, T. (2006). Nanostructured Materials for Solar Energy Conversion, Elsevier.
Vinaayak, S. B.. Balasubramani, V., Shkir, M., Manthrammel, M. A., & Sreedevi, G. (2022). Enhancing the performance of TiO2 based N-DSSC using dye extracted from Cladophora Columbiana, Ludwigia repens and mixed sensitizer. Optical Materials, 133, 112968. https://doi.org/10.1016/j.optmat.2022.112968.
Elsaeedy, H. I., Qasem, A., Yakout, H. A., & Mahmoud, M. (2021). The pivotal role of TiO2 layer thickness in optimizing the performance of TiO2/P-Si solar cell. Journal of Alloys and Compounds, 867, 159150. https://doi.org/10.1016/j.jallcom.2021.159150.
Castilhos, S., Souza, F., Colpini, L., Jorge, L., & Santos, O. (2020). Assessment comparison of commercial TiO2 and TiO2 sol-gel on the degradation of caffeine using artificial radiation, Environmental Science and Pollution Research, 27. https://doi.org/10.1007/s11356-020-07748-x.
Low, K. T., Yam, F. K., Beh, K. P., Abd Manaf, A., & Beh, K. K. (2021). Characteristics and Sensing of Sol-gel derived Titanium Dioxide-based Ultraviolet Photodetector on Flame Retardant-4 Board," Sensors and Actuators A: Physical, vol. 323, p. 112654, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.sna.2021.112654.
Kishore Kumar, D. et al. (2020). Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Materials Science for Energy Technologies, 3, 472-481. https://doi.org/10.1016/j.mset.2020.03.003.
González-Verjan, V. A. et al. (2020). Effect of TiO2 particle and pore size on DSSC efficiency. Materials for Renewable and Sustainable Energy, 9(2), 13. https://doi.org/10.1007/s40243-020-00173-7.
Dryga?a, A. (2021). Influence of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cells. IOP Conference Series: Earth and Environmental Science, 642(1), 12001. https://doi.org/10.1088/1755-1315/642/1/012001.
Chang, H. et al. (2010). Fabrication of multilayer TiO2 thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition. Solar Energy, 84(1), 130-136. https://doi.org/10.1016/j.solener.2009.10.018.
Morad, I., Alshehri, A. M., Mansour, A. F., Wasfy, M. H., & El-Desoky, M. M. (2020). Facile synthesis and comparative study for the optical performance of different TiO2 phases doped PVA nanocomposite films. Physica B: Condensed Matter, 597, 412415. https://doi.org/10.1016/j.physb.2020.412415.
Kao, M. C., Chen, H. Z., Young, S. L., Kung, C. Y., & Lin, C. C. (2009). The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells. Thin Solid Films, 517(17), 5096-5099. https://doi.org/10.1016/j.tsf.2009.03.102.
Yeoh, M.-E. et al. (2023). Hydrothermal duration effect on the self-assembled TiO2 photo-anode for DSSC application. Optical Materials, 141, 113907. https://doi.org/10.1016/j.optmat.2023.113907.
Ibrahim, S.& Sreekantan, S. (2010). Effect of pH on TiO2 Nanoparticles via Sol-Gel Method. Advanced Materials Research, 173, 184-189. https:doi.org/10.4028/www.scientific.net/AMR.173.184.
Faruk, H. M., Sarwar, P. M., & Nahid, M. A. I. (2020). Influence of film thickness on optical and morphological properties of TiO2 thin films. Emerging Materials Research. 9(1), 186-191. https://doi.org/10.1680/jemmr.17.00085.
Priyalakshmi Devi, K., Goswami, P., & Chaturvedi, H. (2022). Fabrication of nanocrystalline TiO2 thin films using Sol-Gel spin coating technology and investigation of its structural, morphology and optical characteristics. Applied Surface Science, 591, 153226. https://doi.org/10.1016/j.apsusc.2022.153226.
Mohamad Saad, P. S., Sutan, H., Shariffudin, S., Hashim, H., & Mohd Noor, U. (2006). TiO2 Thin Film via Sol-Gel Method: Investigation on Molarity Effect. IOP Conference Series: Materials Science and Engineering, 99, 12006, https://doi.org/10.1088/1757-899X/99/1/012006.

(Pirdaus et al., 2023)
Pirdaus, N. A., Amini, I. N. N., Mohtar, W. A. A. Q. I. W., Aziz, M. A. S. A., & Ahmad, N. (2023). Effect of Deposition Layer of Titanium Dioxide (TIO2) Thin Film as Photoanode For Economically Sustainable Dye-Sensitized Solar Cell (DSSC) Application. International Journal of Academic Research in Economics and Management Sciences, 12(3), 401–412.