ISSN: 2225-8329
Open access
In this paper we explores as to whether cryptocurrency returns exhibit asymmetric reverting patterns and we test the presence of regime changes in the GARCH volatility dynamics of Bitcoin log–returns. For these reason, we uses non-linear autoregressive and Markov–switching GARCH (SETAR-MSGARCH) models. We ?nds strong evidence of regime changes in the mean and GARCH process. In addition, we conclude that bad news and good news of the same size have same impacts for investors.
1. Ardia, D., Bluteau, K., Boudt, K., & Catania, L. (2018a). Forecasting risk with Markov-switching GARCH models:A large-scale performance study. International Journal of Forecasting, 34(4), 733-747. doi: https://doi.org/10.1016/j.ijforecast.2018.05.004
2. Ardia, D., Bluteau, K., & Rüede, M. (2018b). Regime changes in Bitcoin GARCH volatility dynamics. Finance Research Letters. doi: https://doi.org/10.1016/j.frl.2018.08.009
3. Ahmed, U., Majid, A. H. A., & Zin, M. L. M. (2016). HR Moderating HR: Critical link between Developmental HR Practices and work engagement in a Moderated Model. Management Review: An International Journal, 11(2), 4-22.
4. Ahmed, U., Umrani, W. A., Qureshi, M. A., & Samad, A. (2018). Examining the links between teachers support, academic efficacy, academic resilience, and student engagement in Bahrain. International Journal of Advanced and Applied Sciences, 5(9), 39-46.
5. Salem, B. M., & Perraudin, C. (2001). Tests de linéarité, spécification et estimation de modèles à seuil : une analyse comparée des méthodes de Tsay et de Hansen. [Linearity Tests and Threshold Model Specification and Estimation: A Comparative Analysis of the Tsay and Hansen Methods]. Economie & prévision, 148(2), 157-176.
6. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. doi: https://doi.org/10.1016/0304-4076(86)90063-1
7. Bouri, E., Azzi, G., & Dyhrberg, A. H. (2016). On the return-volatility relationship in the Bitcoin market around the price crash of 2013.
8. Caporale, G. M., & Zekokh, T. (2019). Modelling volatility of cryptocurrencies using Markov-Switching GARCH models. Research in International Business and Finance, 48, 143-155. doi: https://doi.org/10.1016/j.ribaf.2018.12.009
9. Cheah, E. T., & Fry, J. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics Letters, 130, 32-36. doi: https://doi.org/10.1016/j.econlet.2015.02.029
10. Chu, J., Chan, S., Nadarajah, S., & Osterrieder, J. (2017). GARCH modelling of cryptocurrencies. Journal of Risk and Financial Management, 10(4), 17.
11. Corbet, S., & Katsiampa, P. (2018). Asymmetric mean reversion of Bitcoin price returns. International Review of Financial Analysis. doi: https://doi.org/10.1016/j.irfa.2018.10.004
12. Corbet, S., Lucey, B., & Yarovaya, L. (2018a). Datestamping the Bitcoin and Ethereum bubbles. Finance Research Letters, 26, 81-88. doi: https://doi.org/10.1016/j.frl.2017.12.006
13. Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018b). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28-34. doi: https://doi.org/10.1016/j.econlet.2018.01.004
14. Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar – A GARCH volatility analysis. Finance Research Letters, 16, 85-92. doi: https://doi.org/10.1016/j.frl.2015.10.008
15. GLOSTEN, L. R., JAGANNATHAN, R., & RUNKLE, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The journal of finance, 48(5), 1779-1801. doi: doi:10.1111/j.1540-6261.1993.tb05128.x
16. Haas, M., Mittnik, S., & Paolella, M. S. (2004). A New Approach to Markov-Switching GARCH Models. Journal of financial econometrics, 2(4), 493-530. doi: 10.1093/jjfinec/nbh020
17. Hafner, C. (2018). Testing for bubbles in cryptocurrencies with time-varying volatility.
18. Hansen, B. E. (1996). Inference When a Nuisance Parameter Is Not Identified Under the Null Hypothesis. Econometrica, 64(2), 413-430. doi: 10.2307/2171789
19. Kim, T. (2017). On the transaction cost of Bitcoin. Finance Research Letters, 23, 300-305.
20. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. doi:
https://bitcoin.org/bitcoin.pdf.Workingpaper.
21. Nam, K., Kim, S. W., & Arize, A. C. (2006). Mean reversion of short-horizon stock returns: asymmetry property. Review of Quantitat
To cite this article: Hamida, H.B.H., Scalera, F. (2019). Threshold Mean Reversion and Regime Changes of Cryptocurrencies using SETAR-MSGARCH Models, International Journal of Academic Research in Accounting, Finance and Management Sciences 9 (3): 221-229
Copyright: © 2019 The Author(s)
Published by Human Resource Management Academic Research Society (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode