Journal Screenshot

International Journal of Academic Research in Business and Social Sciences

Open Access Journal

ISSN: 2222-6990

Effects of High Intensity Interval Training Using Ifittkids Module on Memory Strength, Attention and Aerobic Capacity

Vadivelan Lohonathan, Siti Hartini Azmi, Norhazira Rahim

http://dx.doi.org/10.6007/IJARBSS/v11-i12/11826

Open access

Executive function, attention, and memory are an important indicator of cognitive health of children. Cardiovascular fitness has a positive relationship with cognitive function performance. IFITTKIDS module is a training programme guided by High Intensity Interval Training (HIIT) used to see the effect on memory strength, attention and aerobic capacity. This HIIT training is able to increase the fitness level optimally in a short period of time. This study was conducted quantitatively using a ‘Pre and post control group design’. The study subjects consisted of 64 primary school students aged 11 years who were divided into two groups namely 32 participants in the treatment group and 32 in the control group. The intervention was conducted for 12 weeks with a training frequency of two times a week for 20 minutes per session. The results using ANCOVA test analysis showed that by adjusting the pre-test score as a covariate, the post-test score for memory strength, attention and aerobic capacity of the treatment group was significantly higher with the score from the control group with F (1.61) = 68.15, p <.05, and eta squared = .53, F(1,61) = 54.906, p < .05, eta squared = .47 and F (1.61) = 63,987, p <.05, and eta squared = .51. Substantially, the findings of this study show that HIIT training guided by IFITTKIDS MODULE for 8 weeks is productive in improvising aerobic capacity and memory strength in 11-year-old school children. The results of this study, recommend that this IFITTKIDS MODULE can be used as one of the training programme to increase the level of memory strength, attention and aerobic capacity in children.

Abraham, A., George, V. M., & Kunnath, S. (2016). Auditory Short Term Memory and Academic Achievement in Normal School Going Children. International Journal of Health Sciences & Research, 6(1), 480–483.
Alves, C. R., Tessaro, V. H., Teixeira, L. A., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of Acute High-Intensity Aerobic Interval Exercise Bout on Selective Attention and Short-Term Memory Tasks. Perceptual and Motor Skills, 118(1), 63–72. https://doi.org/10.2466/22.06.pms.118k10w4
Awang, Z. (2012). Strategi pengajaran mata pelajaran Pendidikan Jasmani yang berkesan.
(Tesis sarjana tidak diterbitkan). Universiti Malaya, Malaysia.
Bartlett, J. D., Close, G. L., MacLaren, D. P., Gregson, W., Drust, B., & Morton, J. P. (2011).
High-intensity interval running is perceived to be more enjoyable than moderateintensity continuous exercise: implications for exercise adherence. Journal of Sports Sciences, 29(6), 547-553.
Bass, R. W., Brown, D. D., Laurson, K. R., & Coleman, M. M. (2013). Physical fitness and academic performance in middle school students. Acta Paediatrica, 102(8), 832–837. https://doi.org/10.1111/apa.12278
Barker, A. R., Day, J., Smith, A., Bond, B., & Williams, C. A. (2014). The influence of 2 weeks of low-volume high-intensity interval training on health outcomes in adolescent boys. Journal of Sports Sciences, 32(8), 757–765.
https://doi.org/10.1080/02640414.2013.853132
Baquet, G., Gamelin, F. Ç.-X., Mucci, P., Thévenet, D., Van Praagh, E., & Berthoin, S. (2010). Continuous vs. interval aerobic training in 8- to 11-year-old children. Journal of Strength and Conditioning Research, 24(5), 1381–1388.
https://doi.org/10.1519/jsc.0b013e3181d1575a
Berchtold, N. C., Castello, N., & Cotman, C. W. (2010). Exercise and time-dependent benefits to learning and memory. Neuroscience, 167(3), 588–597.
https://doi.org/10.1016/j.neuroscience.2010.02.050
Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle. Sports Medicine, 43(5), 313-338. doi:10.10007/s40279-0130029-x
Buck, S. M., Hillman, C. H., & Castelli, D. M. (2008). The relation of aerobic fitness TO Stroop task performance in preadolescent children. Medicine & Science in Sports & Exercise, 40(1), 166–172. https://doi.org/10.1249/mss.0b013e318159b035
Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586(1), 151-160
Burns, R. D., Hannon, J. C., Allen, B. M., & Brusseau, T. A. (2014). Convergent validity of The One-Mile run and PACER VO2max prediction models in middle school students. SAGE Open, 4(1), 215824401452542. https://doi.org/10.1177/2158244014525420
Canepa, P., Pedullà, L., Bisio, A., Ruggeri, P., & Bove, M. (2020). Is the 12 minute-walk/run test a predictive index of cognitive fitness in young healthy individuals? A pilot study on aerobic capacity and working memory in a real-life scenario. Neuroscience Letters, 728, 134983. https://doi.org/10.1016/j.neulet.2020.134983
Carlson, S. A., Fulton, J. E., Lee, S. M., Maynard, L. M., Brown, D. R., Kohl, H. W., & Dietz, W. H. (2008). Physical Education and Academic Achievement in Elementary School: Data From the Early Childhood Longitudinal Study. American Journal of Public Health, 98(4), 721–727. https://doi.org/10.2105/ajph.2007.117176
Curlik, D. M., & Shors, T. J. (2013). Training your brain: Do mental and physical (map) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology, 64, 506–514. https://doi.org/10.1016/j.neuropharm.2012.07.027
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. https://doi.org/10.1016/j.brainres.2012.02.068
Chandler, R. M., & Stringer, A. J. (2020). A Comprehensive Exploration into Utilizing High-Intensity Interval Training (HIIT) in Physical Education Classes. Journal of Physical Education, Recreation & Dance, 91(1), 14–23.
https://doi.org/10.1080/07303084.2019.1679296
Castelli, D. M., Hillman, C. H., Buck, S. M., & Erwin, H. E. (2007). Physical Fitness and academic achievement in third- and fifth-grade students. Journal of Sport and Exercise Psychology, 29(2), 239–252. https://doi.org/10.1123/jsep.29.2.239
Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., VanPatter, M., Pontifex, M. B., Raine, L. B., Konkel, A., Hillman, C. H., Cohen, N. J., & Kramer, A. F. (2010). A neuroimaging investigation of the association between Aerobic Fitness, hippocampal volume, and memory performance in Preadolescent Children. Brain Research, 1358, 172–183. https://doi.org/10.1016/j.brainres.2010.08.049
Chaddock, L., Pontifex, M. B., Hillman, C. H., & Kramer, A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. Journal of the International Neuropsychological Society, 17(6), 975–985. https://doi.org/10.1017/s1355617711000567
Chun, D. M., Corbin, C. B., & Pangrazi, R. P. (2000). Validation of criterion-referenced standards for the mile run and progressive aerobic cardiovascular endurance tests. Research Quarterly for Exercise and Sport, 71(2), 125–134.
https://doi.org/10.1080/02701367.2000.10608890
Costigan, S.A.; Eather, N.; Plotniko?, R.C.; Hillman, C.H.; Lubans, D.R. (2016). High-intensity interval training for cognitive and mental health in adolescents. Medicine & Science in Sports & Exercise, 48(10), 1985–1993.
https://doi.org/10.1249/mss.0000000000000993
Crova, C., Struzzolino, I., Marchetti, R., Masci, I., Vannozzi, G., Forte, R., & Pesce, C. (2013). Cognitively challenging physical activity benefits executive function in overweight children. Journal of Sports Sciences, 32(3), 201–211.
https://doi.org/10.1080/02640414.2013.828849
Cvetkovi?, N., Stojanovi?, E., Stojiljkovi?, N., Nikoli?, D., Scanlan, A. T., & Milanovi?, Z. (2018). Exercise training in overweight and obese children: Recreational football and high-intensity interval training provide similar benefits to physical fitness. Scandinavian Journal of Medicine & Science in Sports, 28, 18–32. https://doi.org/10.1111/sms.13241
Davis, C. L., Tomporowski, P. D., McDowell, J. E., Austin, B. P., Miller, P. H., Yanasak, N. E., Allison, J. D., & Naglieri, J. A. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychology, 30(1), 91–98. https://doi.org/10.1037/a0021766
Déry, N., Pilgrim, M., Gibala, M., Gillen, J., Wojtowicz, J. M., MacQueen, G., & Becker, S. (2013). Adult hippocampal neurogenesis reduces memory interference in humans: Opposing effects of aerobic exercise and depression. Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00066
Delgado-Floody, P., Espinoza-Silva, M., García-Pinillos, F., & Latorre-Román, P. (2018). Effects of 28 weeks of high-intensity interval training during physical education classes ON cardiometabolic risk factors in Chilean schoolchildren: A pilot trial. European Journal of Pediatrics, 177(7), 1019–1027. https://doi.org/10.1007/s00431-018-3149-3
Delgado-Floody, P., Latorre-Román, P., Jerez-Mayorga, D., Caamaño-Navarrete, F., & García-Pinillos, F. (2019). Feasibility of incorporating high-intensity interval training into physical education programs to improve body composition and cardiorespiratory capacity of overweight and obese children: A systematic review. Journal of Exercise Science & Fitness, 17(2), 35–40. https://doi.org/10.1016/j.jesf.2018.11.003
Dobbins, M., Husson, H., DeCorby, K., & LaRocca, R. L. (2013). School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database of Systematic Reviews.
https://doi.org/10.1002/14651858.cd007651.pub2
Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children. Medicine & Science in Sports & Exercise, 48(6), 1197–1222. https://doi.org/10.1249/mss.0000000000000901
Drollette, E. S., Scudder, M. R., Raine, L. B., Davis Moore, R., Pontifex, M. B., Erickson, K. I., & Hillman, C. H. (2015). The sexual dimorphic association of cardiorespiratory fitness to working memory in children. Developmental Science, 19(1), 90–108. https://doi.org/10.1111/desc.12291
Dunn, S. L. (2009). Effects of exercise and dietary intervention on metabolic syndrome markers of inactive premenopausal women (Doctoral dissertation, University of New South Wales).
El-Sayes, J., Harasym, D., Turco, C. V., Locke, M. B., & Nelson, A. J. (2018). Exercise-Induced Neuroplasticity: A Mechanistic Model and Prospects for Promoting Plasticity. The Neuroscientist, 25(1), 65–85. https://doi.org/10.1177/1073858418771538
Ericsson, I. (2008). Motor skills, attention and academic achievements. An intervention study in school years 1–3. British Educational Research Journal, 34(3), 301–313. https://doi.org/10.1080/01411920701609299
Erickson, K. I., Hillman, C. H., & Kramer, A. F. (2015). Physical activity, brain, and cognition. Current Opinion in Behavioral Sciences, 4, 27–32.
https://doi.org/10.1016/j.cobeha.2015.01.005
Esteban-Cornejo, I., Tejero-Gonzalez, C. M., Sallis, J. F., & Veiga, O. L. (2015). Physical activity and cognition in adolescents: A systematic review. Journal of Science and Medicine in Sport, 18(5), 534–539. https://doi.org/10.1016/j.jsams.2014.07.007
Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male sprague–dawley rats in vivo. Neuroscience, 124(1), 71–79.
https://doi.org/10.1016/j.neuroscience.2003.09.029
Frazão, D. T., de Farias Junior, L. F., Dantas, T. C., Krinski, K., Elsangedy, H. M., Prestes, J., Hardcastle, S. J., & Costa, E. C. (2016). Feeling of Pleasure to High-Intensity Interval Exercise Is Dependent of the Number of Work Bouts and Physical Activity Status. PLOS ONE, 11(3), 1–16. https://doi.org/10.1371/journal.pone.0152752
Gallotta, M. C., Emerenziani, G. P., Iazzoni, S., Meucci, M., Baldari, C., & Guidetti, L. (2015). Impacts of coordinative training on normal weight and overweight/obese children’s attentional performance. Frontiers in Human Neuroscience, 9.
https://doi.org/10.3389/fnhum.2015.00577
Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity
interval training: a little pain for a lot of gain? Exercise and Sport Sciences Reviews, 36(2), 58-63.
Gibala, M. J., Little, J. P., Van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., Raha, S., & Tarnopolsky, M. A. (2006). Short-term sprint intervalversustraditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. The Journal of Physiology, 575(3), 901–911.
https://doi.org/10.1113/jphysiol.2006.112094
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. https://doi.org/10.1038/nrn2298
Hwang, C. L., Wu, Y. T., & Chou, C. H. (2011). Effect of aerobic interval training on
exercise capacity and metabolic risk factors in people with cardiometabolic disorders:
a meta-analysis. Journal of Cardiopulmonary Rehabilitation and Prevention, 31(6),
378-385.
Jeon, Y. K., & Ha, C. H. (2017). The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environmental Health and Preventive Medicine, 22(1), 1–6. https://doi.org/10.1186/s12199-017-0643-6
Kao, S. C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90–99. https://doi.org/10.1016/j.psychsport.2018.05.011
Kao, S. C., Cadenas?Sanchez, C., Shigeta, T., Walk, A., Chang, Y. K., Pontifex, M., & Hillman, C. (2019). A systematic review of physical activity and cardiorespiratory fitness on p3b. Psychophysiology, 57(7), 1–40. https://doi.org/10.1111/psyp.13425
Kao, S. C., Wang, C.-H., & Hillman, C. H. (2020). Acute effects of aerobic exercise on response variability and neuroelectric indices during a serial n-back task. Brain and Cognition, 138, 105508. https://doi.org/10.1016/j.bandc.2019.105508
Ketelhut, S., Kircher, E., Ketelhut, S. R., Wehlan, E., & Ketelhut, K. (2020). Effectiveness of multi-activity, high-intensity interval training in school-aged children. International Journal of Sports Medicine, 41(04), 227–232. https://doi.org/10.1055/a-1068-9331
Kilpatrick, M. W., Jung, M. E., & Little, J. P. (2014). High-intensity interval training: a review of physiological and psychological responses. ACSM's Health & Fitness Journal, 18(5), 11-16.
Kujach, S., Byun, K., Hyodo, K., Suwabe, K., Fukuie, T., Laskowski, R., Dan, I., & Soya, H. (2018). A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults. NeuroImage, 169, 117–125. https://doi.org/10.1016/j.neuroimage.2017.12.003
Khan, N. A., & Hillman, C. H. (2014). The Relation of Childhood Physical Activity and Aerobic Fitness to Brain Function and Cognition: A Review. Pediatric Exercise Science, 26(2), 138–146. https://doi.org/10.1123/pes.2013-0125
Knaepen, K., Goekint, M., Heyman, E. M., & Meeusen, R. (2010). Neuroplasticity – exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Medicine, 40(9), 765–801. https://doi.org/10.2165/11534530-000000000-00000
Koutsandreou, F., Wegner, M., Niemann, C., & Budde, H. (2016). Effects of Motor versus Cardiovascular Exercise Training on Children’s Working Memory. Medicine & Science in Sports & Exercise, 48(6), 1144–1152. https://doi.org/10.1249/mss.0000000000000869
Lin, C. C., Hsieh, S. S., Chang, Y. K., Huang, C. J., Hillman, C., & Hung, T. M. (2021). Up-regulation of proactive control is associated with beneficial effects of a childhood gymnastics program on response preparation and working memory. Brain and Cognition, 149, 105695. https://doi.org/10.1016/j.bandc.2021.105695
Lambrick, D., Westrupp, N., Kaufmann, S., Stoner, L., & Faulkner, J. (2016). The effectiveness of a high-intensity games intervention on improving indices of health in young children. Journal of sports sciences, 34(3), 190-198.
Doi: 10.1080/02640414.2015.1048521
Landrigan, J. F., Bell, T., Crowe, M., Clay, O., & Mirman, D. (2020). Lifting cognition: A meta-analysis of effects of resistance exercise on cognition. Psychological Research, 84(5), 1167–1183. https://doi.org/10.1007/s00426-019-01145-x
Little, J. P., Gillen, J. B., Percival, M. E., Safdar, A., Tarnopolsky, M. A., Punthakee, Z., ... & Gibala, M. J. (2011). Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of Applied Physiology, 111(6), 1554-1560.
Lonsdale, C., Rosenkranz, R. R., Peralta, L. R., Bennie, A., Fahey, P., & Lubans, D. R. (2013). A systematic review and meta-analysis of interventions designed to increase moderate-to-vigorous physical activity in school physical education lessons. Preventive Medicine, 56(2), 152–161. https://doi.org/10.1016/j.ypmed.2012.12.004
Ludyga, S., Herrmann, C., Mücke, M., Andrä, C., Brand, S., Pühse, U., & Gerber, M. (2018). Contingent Negative Variation and Working Memory Maintenance in Adolescents with Low and High Motor Competencies. Neural Plasticity, 2018, 1–9.
https://doi.org/10.1155/2018/9628787
Malina, R. M. (1996). Tracking of physical activity and physical fitness across the lifespan. Research Quarterly for Exercise and Sport, 67(sup3), 48–57.
https://doi.org/10.1080/02701367.1996.10608853
Milanovi?, Z., Sporiš, G., & Weston, M. (2015). Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Medicine, 45, 14691481.
Moreau, D., & Chou, E. (2019). The acute effect of high-intensity exercise on executive function: A meta-analysis. Perspectives on Psychological Science, 14(5), 734–764. https://doi.org/10.1177/1745691619850568
Moreau, D., Kirk, I. J., & Waldie, K. E. (2017). High-intensity training enhances executive function in children in a randomized, placebo-controlled trial. ELife, 6, 2–26. https://doi.org/10.7554/elife.25062
Mura, G., Vellante, M., Nardi, A., Machado, S., & Carta, M. (2015). Effects of school-based physical activity interventions on cognition and academic achievement: A systematic review. CNS & Neurological Disorders - Drug Targets, 14(9), 1194–1208. https://doi.org/10.2174/1871527315666151111121536
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2017). Exercise interventions for cognitive function in adults older THAN 50: A systematic review with meta-analysis. British Journal of Sports Medicine, 52(3), 154–160. https://doi.org/10.1136/bjsports-2016-096587
Papp, K. V., Kaplan, R. F., Springate, B., Moscufo, N., Wakefield, D. B., Guttmann, C. R., & Wolfson, L. (2013). Processing speed in normal aging: Effects of white matter hyperintensities and hippocampal volume loss. Aging, Neuropsychology, and Cognition, 21(2), 197–213. https://doi.org/10.1080/13825585.2013.795513
Pesce, C., Crova, C., Marchetti, R., Struzzolino, I., Masci, I., Vannozzi, G., & Forte, R. (2013). Searching for cognitively optimal challenge point in physical activity for children with typical and atypical motor development. Mental Health and Physical Activity, 6(3), 172–180. https://doi.org/10.1016/j.mhpa.2013.07.001
Pesce, C., Masci, I., Marchetti, R., Vazou, S., Saakslahti, A., & Tomporowski, P. D. (2016). Deliberate play and preparation jointly benefit motor and cognitive development: Mediated and moderated effects. Frontiers in Psychology, 7, 155. doi:10.3389/fpsyg.2015.00349
Pontifex, M. B., Raine, L. B., Johnson, C. R., Chaddock, L., Voss, M. W., Cohen, N. J., Kramer, A. F., & Hillman, C. H. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in Preadolescent Children. Journal of Cognitive Neuroscience, 23(6), 1332–1345. https://doi.org/10.1162/jocn.2010.21528
Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139(1), 23–38. https://doi.org/10.1016/j.neuroscience.2005.06.005
Postle, B. R. (2016). How does the brain keep information “in mind”? Current Directions in Psychological Science, 25(3), 151–156. https://doi.org/10.1177/0963721416643063
Raine, L. B., Scudder, M. R., Saliba, B. J., Kramer, A. F., & Hillman, C. (2016). Aerobic fitness and Context processing in preadolescent children. Journal of Physical Activity and Health, 13(1), 94–101. https://doi.org/10.1123/jpah.2014-0468
Rasberry, C. N., Lee, S. M., Robin, L., Laris, B. A., Russell, L. A., Coyle, K. K., & Nihiser, A. J. (2011). The association between school-based physical activity, including physical education, and academic performance: A systematic review of the literature. Preventive Medicine, 52. https://doi.org/10.1016/j.ypmed.2011.01.027
Rassovsky, Y., & Alfassi, T. (2019). Attention improves during physical exercise in individuals with ADHD. Frontiers in Psychology, 9:2747. https://doi.org/10.3389/fpsyg.2018.02747
Rao, R. M., Vhavle, S. P., & Manjunath, N. K. (2019). Comparison of yoga versus physical exercise on executive function, attention, and working memory in adolescent schoolchildren: A randomized controlled trial. International Journal of Yoga, 12(2), 172. https://doi.org/10.4103/ijoy.ijoy_61_18
Richardson, J. T. (2007). Measures of short-term memory: a historical review. Cortex,
43(5), 635-650.
Samuel, R. D., Zavdy, O., Levav, M., Reuveny, R., Katz, U., & Dubnov-Raz, G. (2017). The Effects of Maximal Intensity Exercise on Cognitive Performance in Children. Journal of Human Kinetics, 57(1), 85–96. https://doi.org/10.1515/hukin-2017-0050
Sujatha, B., Alagesan, J., Pavithra, B., Pavithra, P., & Rayna, A. B. S. (2020). Effectiveness of Aerobic Exercise on Short-Term Memory and Sustained Attention among School Students. Biomedicine, 40(2), 246–250.
Suminski, R. R., Ryan, N. D., Poston, C. S., & Jackson, A. S. (2004). Measuring aerobic fitness of Hispanic Youth 10 to 12 years of age. International Journal of Sports Medicine, 25(1), 61–67. https://doi.org/10.1055/s-2003-45230
Scherder, E., Scherder, R., Verburgh, L., Königs, M., Blom, M., Kramer, A. F., & Eggermont, L. (2014). Executive functions of sedentary elderly may benefit from walking: A systematic review and meta-analysis. The American Journal of Geriatric Psychiatry, 22(8), 782–791. https://doi.org/10.1016/j.jagp.2012.12.026
Schmidt, M., Jäger, K., Egger, F., Roebers, C. M., & Conzelmann, A. (2015). Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: A group-randomized controlled trial. Journal of Sport and Exercise Psychology, 37(6), 575–591. https://doi.org/10.1123/jsep.2015-0069
Tomporowski, P. D., Lambourne, K., & Okumura, M. S. (2011). Physical activity interventions and children's mental function: An introduction and overview. Preventive Medicine, 52, S3–S9. https://doi.org/10.1016/j.ypmed.2011.01.028
Tottori, N., Morita, N., Ueta, K., & Fujita, S. (2019). Effects of High Intensity Interval Training on Executive Function in Children Aged 8–12 Years. International Journal of Environmental Research and Public Health, 16(21), 4127.
https://doi.org/10.3390/ijerph16214127
Tjønna, A. E., Stølen, T. O., Bye, A., Volden, M., Slørdahl, S. A., Ødegård, R., & Wisløff, U.
(2009). Aerobic interval training reduces cardiovascular risk factors more than a multi treatment approach in overweight adolescents. Clinical Science, 116(4), 317-326.
Van der Niet, A. G., Smith, J., Scherder, E. J. A., Oosterlaan, J., Hartman, E., & Visscher, C. (2015). Associations between daily physical activity and executive functioning in primary school-aged children. Journal of Science and Medicine in Sport, 18(6), 673–677. https://doi.org/10.1016/j.jsams.2014.09.006
Van der Niet, A. G., Smith, J., Oosterlaan, J., Scherder, E. J. A., Hartman, E., & Visscher, C. (2016). Effects of a cognitively demanding aerobic intervention during recess on children’s physical fitness and executive functioning. Pediatric Exercise Science, 28(1), 64–70. https://doi.org/10.1123/pes.2015-0084
Vazou, S., Pesce, C., Lakes, K., & Smiley-Oyen, A. (2016). More than one road leads to Rome: A narrative review and meta-analysis of physical activity Intervention effects on cognition in youth. International Journal of Sport and Exercise Psychology, 17(2), 153–178. https://doi.org/10.1080/1612197x.2016.1223423
Wambach, D., Lamar, M., Swenson, R., Penney, D. L., Kaplan, E., & Libon, D. J. (2011). Digit span. Encyclopedia of clinical neuropsychology, 844-849.
Wisløff, U., Støylen, A., Loennechen, J. P., Bruvold, M., Rognmo, Ø., Haram, P. M., & Videm, V. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients a randomized study. Circulation, 115(24), 3086-3094
Woods, D. L., Kishiyama, M. M., Yund, E. W., Herron, T. J., Edwards, B., Poliva, O.,
& Reed, B. (2011). Improving digit span assessment of short-term verbal memory. Journal of clinical and experimental neuropsychology, 33(1), 101-111.
Yin, J., Zhou, Z., & Lan, T. (2020). High-intensity interval training versus moderate-intensity continuous training on health outcomes for children and adolescents: A meta-analysis of randomized controlled trials. BioMed Research International, 2020, 1–18. https://doi.org/10.1155/2020/9797439
Youngjohn, J. R., Larrabee, G. J., & Crook, T. H. (1992). Test-retest reliability of computerized, everyday memory measures and traditional memory tests. Clinical Neuropsychologist, 6(3), 276–286. https://doi.org/10.1080/13854049208404129
Zapata-Lamana, R., Cuevas, C. I., Fuentes, V., Espindola, S. C., Romero, P. E., Sepulveda, C., & Monsalves-Alvarez, M. (2019). HIITing health in School: Can high intensity interval training be a useful and reliable tool for health on a School-Based Enviroment? A systematic review. International Journal of School Health, 6(3), 1–10. https://doi.org/10.5812/intjsh.89829

In-Text Citation: (Lohonathan et al., 2021)
To Cite this Article: Lohonathan, V., Azmi, S. H., & Rahim, N. (2021). Effects of High Intensity Interval Training Using Ifittkids Module on Memory Strength, Attention and Aerobic Capacity. International Journal of Academic Research in Business and Social Sciences, 11(12), 873–888.