Journal Screenshot

International Journal of Academic Research in Business and Social Sciences

Open Access Journal

ISSN: 2222-6990

Landscape Ecological Restoration As A Strategy For Achieving Carbon Neutrality Target: A Critical Review From Yellow River Floodplain

Ma Yali, Adam Aruldewan S. Muthuveeran, Mohd Johari Mohd Yusof, Gao Yuxuan, Ma Lulu

http://dx.doi.org/10.6007/IJARBSS/v13-i8/18221

Open access

Floodplains are valuable natural resources for humankind, serving to regulate the ecology and environment of the region and providing irreplaceable direct and indirect services to humankind. However, in recent years, the ecological environment of the floodplains has been seriously disturbed and damaged by the combined effects of global climate change and anthropogenic disturbance, and degradation has become a major challenge to the sustainable development of the ecological environment. This resulted in a low ecosystem function and difficulties in meeting the needs of economic development in the floodplain areas. Based on the theories of landscape ecology, landscape ecological planning, sponge city, elastic landscape, and carbon neutrality, this study combines the goal of carbon neutrality with the ecological restoration of the Yellow River floodplain and improves its carbon sink capacity by optimising ecological restoration strategies to increase the contribution rate and promote the early realisation of carbon neutrality.

Krizek, M., Hartvich, F., Chuman, T., Sefrna, L., Sobr, M., & Zadorova, T. (2006). Floodplain and its delimitation. Geografie-Sbornik CGS, 111, (3),260-273. https://doi.org/10.37040/geografie2006111030260
Zhang, J., Shang, Y., Liu, J., Fu, J., & Cui, M. (2020). Improved ecological development model for lower Yellow River floodplain, China. Water Science and Engineering, 13(4), 275–285. https://doi.org/10.1016/j.wse.2020.12.006
Ustaoglu, F., Tepe, Y., Tas, B. (2020). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecol. Indic, 113, 105815. https://doi.org/10.1016/j.ecolind.2019.105815
Bradshaw, A. D. (1996). Underlying principles of restoration. Canadian Journal of Fisheries and Aquatic Sciences, 55 (S1), 3–9. https://doi.org/10.1139/f95-265
Feio, M. J., Hughes, R. M., Callisto, M., Nichols, S. J., Odume, O. O., Quintella, B. R., Kuemmerlen, M., Aguiar, F. C., Almeida, S. F. P., & Alonso-EguiaLis, P. (2021). The biological assessment and rehabilitation of the World’s rivers: An overview. Water, 13, 371. https://doi.org/10.3390/w13030371
Zhen, L., Ishwaran, N., Luo, Q., Wei, Y., & Zhang, Q. (2020). Role, and significance of restoration technologies for vulnerable ecosystems in building an ecological civilization in China. Environ, 34, 100494. https://doi.org/10.1016/j.envdev.2020.100494
Bohn, B. A., & Keershner, J. L. (2001). Establishing aquatic restoration priorities using a watershed approach. J. Environ. Manag, 64, 355–363. https://doi.org/10.1006/jema.2001.0496
Kuo, P. H., Shih, S. S., & Otte, M. L. (2021). Restoration recommendations for mitigating habitat fragmentation of a river corridor. J. Environ. Manag, 296, 113197. https://doi.org/10.1016/j.jenvman.2021.113197
Bombino, G., Gurnell, A. M., Tamburino, V., Zema, D. A., & Zimbone, S. M. (2007). A method for assessing channelization effects on riparian vegetation in a Mediterranean environment. River Res. App, 23, 613–630. https://doi.org/10.1002/rra.1004
Havel, J.E., Medley, K.A., Dickerson, K.D., Angradi, T.R., Bolgrien, D.W., Bukaveckas, P.A., & Jicha, T.M. (2009). Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia, 628, 121–135. https://doi.org/10.1007/s10750-009-9750-8/metrics
Hohensinner, S., Hauer, C., & Muhar, S. (2018). River morphology, channelization, and habitat restoration. Riverine ecosystem management. In Riverine Ecosystem Management, 41–65. https://doi.org/10.1007/978-3-319-73250-3
Baart, I., Hohensinner, S., Zsuffa, I., & Hein, T. (2013). Supporting analysis of floodplain restoration options by historical analysis. Environmental Science & Policy, 34, 92–102. https://doi.org/10.1016/j.envsci.2012.10.003
Hu, S., Ma, R., Sun, Z., Ge, M.Y., Zeng, L.L., Huang, F., Bu, J.W., & Wang, Z. (2021). Determination of the optimal ecological water conveyance volume for vegetation restoration in an arid inland river basin, northwestern China. Sci. Total Environ, 788, 147775. https://doi.org/10.1016/j.scitotenv.2021.147775
Gumiero, B., Mant, J., Hein, T., Elso, J., & Boz, B. (2013). Linking the restoration of rivers and riparian zones/wetlands in Europe: Sharing knowledge through case studies. Ecol. Eng. 56, 36–50. https://doi.org/10.1016/j.ecoleng.2012.12.103
Li, P., Li, D., Sun, X., Chu, Z., Xia, T., Zheng, B. (2022). Application of Ecological Restoration Technologies for the Improvement of Biodiversity and Ecosystem in the River. Water, 4(9), 1402. https://doi.org/10.3390/w14091402
Khaleghi, S., & Surian, N. (2019). Channel adjustments in Iranian Rivers: A review. Water , 11, 672. https://doi.org/10.3390/w11040672
Nakamura, F., Watanabe, Y., Negishi, J., Akasaka, T., Yabuhara, Y., Terui, A., Yamanaka, S., & Konno, M. (2020). Restoration of the shifting mosaic of floodplain forests under a flow regime altered by a dam. Ecol.Eng,157,105974. https://doi.org/10.1016/j.ecoleng.2020.105974
Jia, G.D., Zhang, L.Q., & Yu, X.X. (2022). Carbon Sequestration Mechanism, Realization Way and Carbon Neutralization Strategy of Ecological Restoration. Bulletin of Soil and Water Conservation, 42(5), 393-397. https://doi.org/10.13961/j.cnki.stbctb.2022.05.047
Chen, Y., & Wang, M. (2021). China’s Contribution and the Chinese Approach to Tackling Global Climate Change. Chinese Journal of Urban and Environmental Studies, 09(03), 2150018. https://doi.org/10.1142/S2345748121500184
Yu, Q., Yang, L. Z., Niu, T., & Wu, H. (2022). Analysis of evolutionary features of Production–Living–Ecological Space in the Yellow River Basin and its ecological and environmental effects [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1573218/v1
Yu, Z., Yang, G., Zuo, S., Jorgensen, G., Koga, M., & Vejre, H. (2020). Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban Forestry & Urban Greening, 49, 126630. https://doi.org/10.1016/j.ufug.2020.126630
Zhang, J. L. (2018). Reconstruction and ecological management of the floodplain in the Lower Yellow River. IOP Conference Series: Earth and Environmental Science, 191, 012020. https://doi.org/10.1088/1755-1315/191/1/012020
Zhang, J., Shang, Y., Cui, M., Luo, Q., & Zhang, R. (2022). Successful and sustainable governance of the lower Yellow River, China: A floodplain utilization approach for balancing ecological conservation and development. Environment, Development and Sustainability, 24(3), 3014–3038. https://doi.org/10.1007/s10668-021-01593-9
Zhang, J., Shang, Y., Liu, J., Fu, J., & Cui, M. (2020). Improved ecological development model for lower Yellow River floodplain, China. Water Science and Engineering, 13(4), 275–285. https://doi.org/10.1016/j.wse.2020.12.006
Zhang, Y., Chao, Q., Chen, Y., Zhang, J., Wang, M., Zhang, Y., & Yu, X. (2021). China’s Carbon Neutrality: Leading Global Climate Governance and Green Transformation. Chinese Journal of Urban and Environmental Studies, 09(03), 2150019. https://doi.org/10.1142/S2345748121500196
Zhao, C., Qian, S., Meng, C., Chang, Y., Guo, W., Wang, S., & Sun, Y. (2022). Blue-Green Space Changes of Baiyangdian Wetland in Xiong’an New Area, China. Advances in Meteorology, 22, 1–10. https://doi.org/10.1155/2022/4873393
Zhao, F., Li, C., Shang, W., Zheng, X., Li, Z., Wang, X., Liu, Q., Ma, W., Bu, J., & Yi, Y. (2020). Ecological water requirement accounting of the main stream of the Yellow River from the perspective of habitat conservation [Preprint]. Hydrology. 10,907162. https://doi.org/10.1002/essoar.10504475.1
Zhou, K. (2022). Wetland landscape pattern evolution and prediction in the Yellow River Delta. Applied Water Science, 12(8), 190. https://doi.org/10.1007/s13201-022-01711-6
Zuo, Q., Ding, X., Cui, G., & Zhang, W. (2022). Yellow River Basin Management under Pressure. The Present State, Restoration and Protection: Lessons from a Special Issue. Water, 14(19), 3127. https://doi.org/10.3390/w14193127
Zhang, Y. S., Cao, Q. C., Chen, Y., & Zhang, J.Y. (2021). China’s Carbon Neutrality: Leading Global Climate Governance and Green Transformation. Chinese Journal of Urban and Environmental Studies, 9(3), 103–124. https://doi.org/ 10.1142/S2345748121500196
Schiemer, F., Hein, T., & Reckendorfer, W. (2007). Ecohydrology, key-concept for large river restoration. Ecohydrology & Hydrobiology, 7(2), 101–111. https://doi.org/10.1016/S1642-3593(07)70176-3
Sineeva, N. (2020). Environmental Optimization Activities Depending on the Stress of Urbanized Floodplain-Channel Small Rivers’ Complexes. IOP Conference Series: Materials Science and Engineering, 953, 012023. https://doi.org/10.1088/1757-899X/953/1/012023
Sun, X., & Xiao, Y. (2022). Vegetation Growth Trends of Grasslands and Impact Factors in the Three Rivers Headwater Region. Land, 11(12), 2201. https://doi.org/10.3390/land11122201
Wang, H., Hu, Y., Tang, L., & Zhuo, Q. (2020). Distribution of Urban Blue and Green Space in Beijing and Its Influence Factors. Sustainability, 12(6), 2252. https://doi.org/10.3390/su12062252
Wang, Z., & Chen, Q. (2022). Comprehensive partitions and optimization strategies based on tourism urbanization and resources environment carrying capacity in the Yellow River Basin, China. Environmental Science and Pollution Research, 29(16), 23180–23193. https://doi.org/10.1007/s11356-021-17498-z
Wiersma, Y. F. (2022). A review of landscape ecology experiments to understand ecological processes. Ecological Processes, 11(1), 57. https://doi.org/10.1186/s13717-022-00401-0
Wu, J., Yang, S., & Zhang, X. (2020). Interaction Analysis of Urban Blue-Green Space and Built-Up Area Based on Coupling Model—A Case Study of Wuhan Central City. Water, 12(8), 2185. https://doi.org/10.3390/w12082185
Yan, L., Sheikholeslami, M., Gong, W., Shahidehpour, M., & Li, Z. (2022). Architecture, Control, and Implementation of Networked Microgrids for Future Distribution Systems. Journal of Modern Power Systems and Clean Energy, 10(2), 286–299. https://doi.org/10.35833/MPCE.2021.000669
Sanusi, R., & Jalil, M. (2021). Blue-Green infrastructure determines the microclimate mitigation potential targeted for urban cooling. IOP Conference Series: Earth and Environmental Science, 918(1), 012010. https://doi.org/10.1088/1755-1315/918/1/012010
Chen, A., Wu, S., Wu, M., Sui, X., Wen, J., Jia, W., & Liu, C. (2019). Ecological Response to Integrated Water and Sediment Regulation Onriparian Corridorsin. The Lower Yellow River, 97–106. https://doi.org/10.3850/38WC092019-0179
Cwik, A., Wojcik, T., Ziaja, M., Wojcik, M., Kluska, K., & Kasprzyk, I. (2021). Ecosystem Services and Disservices of Vegetation in Recreational Urban Blue-Green Spaces—Some Recommendations for Greenery Shaping. Forests, 12(8), 1077. https://doi.org/10.3390/f12081077
Diao, J., Liu, J., Zhu, Z., Wei, X., & Li, M. (2022). Active forest management accelerates carbon storage in plantation forests in Lishui, southern China. Forest Ecosystems, 9, 100004. https://doi.org/10.1016/j.fecs.2022.100004
Dobson, J. (2021). Wellbeing and blue-green space in post-pandemic cities: Drivers, debates and departures. Geography Compass, 15(10).https://doi.org/10.1111/gec3.12593
Funk, A., Gschopf, C., Blaschke, A. P., Weigelhofer, G., & Reckendorfer, W. (2013). Ecological niche models for the evaluation of management options in an urban floodplain—Conservation vs. Restoration purposes. Environmental Science & Policy, 34, 79–91. https://doi.org/10.1016/j.envsci.2012.08.011
Funk, A., Reckendorfer, W., Kucera-Hirzinger, V., Raab, R., & Schiemer, F. (2009). Aquatic diversity in a former floodplain: Remediation in an urban context. Ecological Engineering, 35(10), 1476–1484. https://doi.org/10.1016/j.ecoleng.2009.06.013
Hein, T., Schwarz, U., Habersack, H., Nichersu, I., Preiner, S., Willby, N., & Weigelhofer, G. (2016). Current status and restoration options for floodplains along the Danube River. Science of the Total Environment, 543, 778–790. https://doi.org/10.1016/j.scitotenv.2015.09.073
Hohensinner, S., Haidvogl, G., Jungwirth, M., Muhar, S., Preis, S., & Schmutz, S. (2005). Historical analysis of habitat turnover and age distributions as a reference for restoration of Austrian Danube floodplains. WIT Transactions on Ecology and the Environment, 83, 489-502
Keddy, P. A. (2010). Wetland Ecology: Principles and Conservation. Cambridge University Press, 6(4), 813-817. https://doi.org/10.1017/CBO9780511778179
Kozak, D., Henderson, H., de Castro Mazarro, A., Rotbart, D., & Aradas, R. (2020). Blue-Green Infrastructure (BGI) in Dense Urban Watersheds. The Case of the Medrano Stream Basin (MSB) in Buenos Aires. Sustainability, 12(6), 2163. https://doi.org/10.3390/su12062163
Lamond, J., & Everett, G. (2019). Sustainable Blue-Green Infrastructure: A social practice approach to understanding community preferences and stewardship. Landscape and Urban Planning, 191, 103639. https://doi.org/10.1016/j.landurbplan.2019.103639
Li, H., Wang, J., Zhang, J., Qin, F., Hu, J., & Zhou, Z. (2021). Analysis of Characteristics and Driving Factors of Wetland Landscape Pattern Change in Henan Province from 1980 to 2015. Land, 10(6), 564. https://doi.org/10.3390/land10060564
Li, Z., Liu, Q., Zhang, Y., Yan, K., Yan, Y., & Xu, P. (2022). Characteristics of Urban Parks in Chengdu and Their Relation to Public Behaviour and Preferences. Sustainability, 14(11), 6761. https://doi.org/10.3390/su14116761
Liu, J. X., Wu, H. J., & An, Z. Q. (2013). Analysis on the Ecological Restoration Technology. Applied Mechanics and Materials, 438, 1282–1285. https://doi.org/10.4028/www.scientific.net/AMM.438-439.1282
Mitsch, W. J., & Mander, U. (2017). Ecological engineering of sustainable landscapes. Ecological Engineering, 108, 351–357. https://doi.org/10.1016/j.ecoleng.2017.08.021
Pancewicz, A. (2021). Climate-Friendly Cities – Blue-Green Infrastructure Activities. IOP Conference Series: Materials Science and Engineering, 1203(2), 022049. https://doi.org/10.1088/1757-899X/1203/2/022049
Piao, S., Yue, C., Ding, J., & Guo, Z. (2022). Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Science China Earth Sciences, 65(6), 1178–1186. https://doi.org/10.1007/s11430-022-9926-6
Pouso, S., Borja, A., Fleming, L. E., Gomez-Baggethun, E., White, M. P., & Uyarra, M. C. (2021). Contact with blue-green spaces during the COVID-19 pandemic lockdown beneficial for mental health. Science of The Total Environment, 756, 143984. https://doi.org/10.1016/j.scitotenv.2020.143984
Preiner, S., Weigelhofer, G., Funk, A., Hohensinner, S., Reckendorfer, W., Schiemer, F., & Hein, T. (2018). Danube Floodplain Lobau. Riverine Ecosystem Management, 8, 491–506. https://doi.org/10.1007/978-3-319-73250-3_25
Reckendorfer, W., Baranyi, C., Funk, A., & Schiemer, F. (2006). Floodplain restoration by reinforcing hydrological connectivity: Expected effects on aquatic mollusc communities. Journal of Applied Ecology, 43(3), 474–484. https://doi.org/10.1111/j.1365-2664.2006.01155.x

In-Text Citation: (Yali et al., 2023)
To Cite this Article: Yali, M., Muthuveeran, A. A. S., Yusof, M. J. M., Yuxuan, G., & Lulu, M. (2023). Landscape Ecological Restoration As A Strategy For Achieving Carbon Neutrality Target: A Critical Review From Yellow River Floodplain. International Journal of Academic Research in Business and Social Sciences, 13(8), 1253 – 1275.