Alnaimat, A., Choy, L. K., & Jaafar, M. (2017). An assessment of current practices on landslides risk management: a case of Kuala Lumpur territory. Geografia-Malaysian Journal of Society and Space, 13(2).
Althuwaynee, O. F., Pradhan, B., & Ahmad, N. (2015). Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas. Landslides, 12(5), 861-875.
Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120-135.
BERNAMA. (2021). 58 kawasan perumahan berbukit di kl, selangor hadapi risiko tanah runtuh - semasa. MStar. https://www.mstar.com.my/lokal/semasa/2011/05/27/58-kawasan-perumahan-berbukit-di-kl-selangor-hadapi-risiko-tanah-runtuh.
Chen, W., Pourghasemi, H. R., Panahi, M., Kornejady, A., Wang, J., Xie, X., & Cao, S. (2017). Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 297, 69-85.
Comprehensive global database of earthquake-induced landslide events and their impacts. Available online: https://www.sciencebase.gov/catalog/item/5ec70f9d82ce476925eddc9e (accessed on 16 April 2021).
Dahal, D. K., Nawaratne, N. C., Rathnayaka, K. D., & Basiri, H. (2020). Rainfall-induced landslides: Susceptibility, hazard zonation and triggering mechanisms in the Mahaweli River Basin, Sri Lanka. Landslides, 17(2), 291-309.
Department of Statistics, Malaysia. Available online: https://www.dosm.gov.my/v1/index.php?r=column/ctheme&menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09&bul_id=MDMxdHZjWTk1SjFzTzNkRXYzcVZjdz09 (accessed on 22 April 2021.)
Dowling, C. A., & Santi, P. M. (2014). Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Natural hazards, 71(1), 203-227.
EM-DAT. (2015) - The OFDA/CRED - International Disaster Database http://www.emdat.be - Universite catholique de Louvain Brussels – Belgium
Feng, Z. Y., Lo, C. M., & Lin, Q. F. (2017). The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods. Landslides, 14(2), 661-674.
Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161-2181.
Hamid, S. B. A., Pradhan, B., Bui, D. T., Prakash, N., & Vu, T. T. (2023). Spatial assessment of landslide susceptibility using GIS-based machine learning models in the Cameron Highlands, Malaysia. Science of the Total Environment, 857, 159422.
Hong, H., Pradhan, B., Sameen, M. I., Chen, W., & Xu, C. (2017). Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China). Geomatics, Natural Hazards and Risk, 8(2), 1997-2022.
Huang, H., Yu, W., Yu, Q., & Zhang, G. (2013). Landslide surface deformation analysis based on geographically weighted regression model. EJGE, 18, 2693-2704.
IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Solomon,. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
IPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change.
Jabatan Kerja Raya. (2008). Appendix B: Landslide Inventory and Total Estimated Costs. National Slope Master Plan 2009- 2023.
Jabatan Pengairan dan Saliran Malaysia. (2018). Laporan Banjir Tahunan 2017/2018 (Annual Flood Report 2017/2018)
Kim, J., Ivanov, V. Y., & Fatichi, S. (2016). Environmental stochasticity controls soil erosion variability. Scientific reports, 6(1), 1-7.
Kirschbaum, D. B., Stanley, T., & Simmons, J. (2015). A dynamic landslide hazard assessment system for Central America and Hispaniola. Natural Hazards and Earth System Sciences, 15(10), 2257-2272.
Kirschbaum, D., Adler, R., Adler, D., Peters-Lidard, C., & Huffman, G. (2012). Global distribution of extreme precipitation and high-impact landslides in 2010 relative to previous years. Journal of Hydrometeorology, 13(5), 1536-1551.
Kouli, M., Loupasakis, C., Soupios, P., & Vallianatos, F. (2010). Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece. Natural hazards, 52(3), 599-621.
Kyriou, A., Nikolakopoulos, K., Koukouvelas, I., & Lampropoulou, P. (2021). Repeated UAV Campaigns, GNSS Measurements, GIS, and Petrographic Analyses for Landslide Mapping and Monitoring. Minerals, 11(3), 300.
Lee, M. L., Ng, K. Y., Huang, Y. F., & Li, W. C. (2014). Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural hazards, 70(1), 353-375.
Mahmud, A. R., Awad, A., & Billa, R. (2013). Landslide susceptibility mapping using averaged weightage score and GIS: A case study at Kuala Lumpur. Pertanika Journals, 473-48.
Majid, N., Taha, M., & Selamat, S. (2020). Historical landslide events in Malaysia 1993–2019. Indian J. Sci. Technol, 13, 3387-3399.
Muhamad, N., Lim, C. S., Reza, M. I. H., & Pereira, J. J. (2013). Input geologi untuk Sistem Sokongan Membuat Keputusan dalam pengurusan risiko bencana: Kajian kes Universiti Kebangsaan Malaysia (In Malay), Geological input for Decision Support System to manage the risk of disasters: A case study of Universiti Kebangsaan Malaysia.
Mukhlisin, M., Matlan, S. J., Ahlan, M. J., & Taha, M. R. (2015). Analysis of rainfall effect to slope stability in Ulu Klang, Malaysia. Jurnal Teknologi, 72(3).
Nhu, V. H., Mohammadi, A., Shahabi, H., Ahmad, B. B., Al-Ansari, N., Shirzadi, A., ... & Nguyen, H. (2020). Landslide detection and susceptibility modeling on cameron highlands (Malaysia): a comparison between random forest, logistic regression and logistic model tree algorithms. Forests, 11(8), 830.
Pall, P., Aina, T., Stone, D. A., Stott, P. A., Nozawa, T., Hilberts, A. G., ... & Allen, M. R. (2011). Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470(7334), 382-385.
Pradhan, B., Lee, S., & Buchroithner, M. F. (2010). A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Environment and Urban Systems, 34(3), 216-235.
Ruzman, N. S. L. N., & Rahman, H. A. (2015). The association between climatic factors and dengue fever: a study in Subang Jaya and Sepang, Selangor (Doctoral dissertation, Universiti Putra Malaysia).
Saadatkhah, N., Kassim, A., & Lee, M. L. (2014). Spatial patterns of precipitation, altitude and monsoon directions in Hulu Kelang area, Malaysia. EJGE C, 19, 521-534.
Skilodimou, H. D., Bathrellos, G. D., Koskeridou, E., Soukis, K., & Rozos, D. (2018). Physical and anthropogenic factors related to landslide activity in the Northern Peloponnese, Greece. Land, 7(3), 85.
Sulaiman, M. S., Nazaruddin, A., Salleh, N. M., Abidin, R. Z., Miniandi, N. D., & Yusoff, A. H. (2019). Landslide occurrences in Malaysia based on soil series and lithology factors. Int. J. Adv. Sci. Technol, 28, 1-26.
Triglia, C., Iadicola, P., & Guerricchio, A. (2022). A Rainfall Threshold-Based Approach for Regional Landslide Early Warning Systems: The Case of Southern Italy. Frontiers in Earth Science, 10.
Yusoff, Z. M., Raju, G., & Nahazanan, H. (2016). Static and Dynamic Behaviour of Kuala Lumpur Limestone. Malaysian Journal of Civil Engineering, 28.