ISSN: 2222-6990
Open access
Location-based services are among important applications in current telecommunication networks which causes an increasing demand in the advancements of indoor positioning systems (IPS). This paper presents a comprehensive review of the technologies and techniques employed in recent works related to IPS and discusses the challenges in IPS implementations. This study widely categorizes indoor positioning technologies into five types which are computer vision, short-range communication, acoustic-based, magnetic methods, and radio frequency (RF) technologies. The strengths and limitations of each technology is discussed based on its accuracy, coverage, infrastructure, implementation cost and signal characteristics. The literature study shows that range-based and fingerprinting are two main techniques employed in IPS. In addition, the study indicates that fingerprinting methods utilizing Wi-Fi and cellular networks are prevalent due to their widespread availability. However, these technologies face some challenges such as multipath fading, signal instability, device heterogeneity, infrastructure and cost implications, computational complexity, and privacy and security concerns. This paper emphasizes the need for innovative approaches to enhance positioning accuracy and reduce infrastructure costs, thereby fostering broader adoption of IPS across diverse applications.
3GPP. (2017). Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Functional stage 2 description of Location Services (LCS)-TS 123 271 - V14.2.0.
Abdullah, R.S., Hakimi, H., & Kamalrudin, M. (2024). Software Security Readiness Index for Remote Working Employee in Public Organization: Preliminary Study. International Journal of Academic Research in Business and Social Sciences
Abed, F. A., Hamza, Z. A., & Mosleh, M. F. (2022). Indoor Positioning System Based on Wi-Fi and Bluetooth Low Energy. International Engineering Conference: Towards Engineering Innovations and Sustainability, 136–141.
Abid, M., Compagnon, P., & Lefebvre, G. (2021). Improved CNN-based Magnetic Indoor Positioning System using Attention Mechanism. International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1–8.
Alhomayani, F., & Mahoor, M. (2020). Deep Learning-based Symbolic Indoor Positioning using the Serving eNodeB. IEEE International Conference on Machine Learning and Applications (ICMLA), 489–494.
Alkhawaja, F., Jaradat, M., & Romdhane, L. (2019). Techniques of Indoor Positioning Systems (IPS): A Survey. Advances in Science and Engineering Technology International Conferences (ASET), IEEE (2019), 1–8.
Alkiek, K., Othman, A., Rizk, H., & Youssef, M. (2020). Deep Learning-based Floor Prediction using Cell Network Information. Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, 663–664.
Andrade, R. M., Paulo, R. R., Francisco, S. M., Teixeira, E., & Velez, F. J. (2021). Characterization of Indoor Small Cells Propagation. International Symposium on Wireless Personal Multimedia Communications (WPMC), 2021-December, 1–6.
Antsfeld, L., & Chidlovskii, B. (2021). Magnetic Field Sensing for Pedestrian and Robot Indoor Positioning. International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1–8.
Asaad, S. M., Potrus, M. Y., Ghafoor, K. Z., Maghdid, H. S., & Mulahuwaish, A. (2022). Improving Positioning Accuracy Using Optimization Approaches: A Survey, Research Challenges and Future Perspectives. Wireless Personal Communications, 122(4), 3393–3409.
Awang Md Isa, A., & Markarian, G. (2011). MIMO Positioning for IMT-Advanced Systems based on Geometry Approach in NLOS Environments. Journal of Telecommunication, Electronic and Computer Engineering, 3(1), 55–68.
Basri, C., & El Khadimi, A. (2017). Survey on Indoor Localization System and Recent Advances of WIFI Fingerprinting Technique. International Conference on Multimedia Computing and Systems, 0, 253–259.
Caso, G., De Nardis, L., Lemic, F., Handziski, V., Wolisz, A., & Benedetto, M. G. DI. (2020). ViFi: Virtual Fingerprinting WiFi-Based Indoor Positioning via Multi-Wall Multi-Floor Propagation Model. IEEE Transactions on Mobile Computing, 19(6), 1478–1491.
Chai, M., Li, C., & Huang, H. (2020). A New Indoor Positioning Algorithm of Cellular and Wi-Fi Networks. Journal of Navigation, 73(3), 509–529.
Choi, J., & Choi, Y. S. (2021). Calibration-Free Positioning Technique using Wi-Fi Ranging and Built-In Sensors of Mobile Devices. IEEE Internet of Things Journal, 8(1), 541–554.
Cimdins, M., Schmidt, S. O., & Hellbrück, H. (2020). MAMPI-UWB—Multipath-Assisted Device-Free Localization with Magnitude and Phase Information with UWB Transceivers. Sensors (Switzerland), 20(24), 1–23.
Cui, X., Yang, J., Li, J., & Wu, C. (2020). Improved Genetic Algorithm to Optimize the Wi-Fi Indoor Positioning based on Artificial Neural Network. IEEE Access, 8(2020), 74914–74921.
Dai, S., He, L., & Zhang, X. (2020). Autonomous WiFi Fingerprinting for Indoor Localization. International Conference on Cyber-Physical Systems (ICCPS), 141–150.
Delabie, D., Wilding, T., Van Der Perre, L., & De Strycker, L. (2023). Anchor Layout Optimization for Ultrasonic Indoor Positioning using Swarm Intelligence. International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1–6.
Deng, Z., Wu, J., Wang, S., & Zhang, M. (2022). Indoor Localization with a Single Access Point based on TDoA and AoA. Wireless Communications and Mobile Computing, 2022(1), 1–10.
Denis, S., Kaya, A., Berkvens, R., & Weyn, M. (2020). Device-Free Localization and Identification using Sub-GHz Passive Radio Mapping. Applied Sciences (Switzerland), 10(18), 1–22.
Djosic, S., Stojanovic, I., Jovanovic, M., Nikolic, T., & Djordjevic, G. L. (2021). Fingerprinting-assisted UWB-based Localization Technique for Complex Indoor Environments. Expert Systems with Applications, 167(2021), 1–14.
Duan, C., Tian, L., Bai, P., & Peng, B. (2021). A Frequency Modulation Fingerprint-Based Positioning Algorithm for Indoor Mobile Localization of Photoelectric Modules. Frontiers in Physics, 8(2021), 1–8.
El Khaled, Z., Ajib, W., & McHeick, H. (2022). Log Distance Path Loss Model: Application and Improvement for Sub 5 GHz Rural Fixed Wireless Networks. IEEE Access, 10, 52020–52029.
Fang, W., Xie, C., & Ran, B. (2021). An Accurate and Real-Time Commercial Indoor Localization System in LTE Networks. IEEE Access, 9, 21167–21179.
Fisher, E., Ivry, A., Alimi, R., & Weiss, E. (2021). Smartphone Based Indoor Localization using Permanent Magnets and Artificial Intelligence for Pattern Recognition. AIP Advances, 11(1), 1–6.
Fuschini, F., Vitucci, E. M., Barbiroli, M., Falciasecca, G., & Degli-Esposti, V. (2015). Ray Tracing Propagation Modeling for Future Small-Cell and Indoor Applications: A Review of Current Techniques. Radio Science, 50(6), 469–485.
Gao, Z., Gao, Y., Wang, S., Li, D., & Xu, Y. (2021). CRISLoc: Reconstructable CSI Fingerprinting for Indoor Smartphone Localization. IEEE Internet of Things Journal, 8(5), 3422–3437.
Gentner, C., Pöhlmann, R., Ulmschneider, M., Jost, T., & Zhang, S. (2017). Positioning using Terrestrial Multipath Signals and Inertial Sensors. Mobile Information Systems, 2017(1), 9170746.
Giuliano, R., Cardarilli, G. C., Cesarini, C., Di Nunzio, L., Fallucchi, F., Fazzolari, R., Mazzenga, F., Re, M., & Vizzarri, A. (2020). Indoor Localization System Based on Bluetooth Low Energy for Museum Applications. Electronics, 9(6), 1055.
Gonultas, E., Lei, E., Langerman, J., Huang, H., & Studer, C. (2022). CSI-Based Multi-Antenna and Multi-Point Indoor Positioning Using Probability Fusion. IEEE Transactions on Wireless Communications, 21(4), 2162–2176.
Gualda, D., Pérez?rubio, M. C., Ureña, J., Pérez?bachiller, S., Villadangos, J. M., Hernández, Á., García, J. J., & Jiménez, A. (2021). Locate?Us: Indoor Positioning for Mobile Devices using Encoded Ultrasonic Signals, Inertial Sensors and Graph?Matching. Sensors, 21(6), 1–25.
Guo, X., Ansari, N., Hu, F., Shao, Y., Elikplim, N. R., & Li, L. (2020). A Survey on Fusion-based Indoor Positioning. IEEE Communications Surveys and Tutorials, 22(1), 566–594.
Hakimi, H., & Nabilah, A. (2024). Book Recommendation System (BRS) Using Collaboration Filtering Machine Learning. In Opportunities and Risks in AI for Business Development: Volume 1 (pp. 993-1002). Cham: Springer Nature Switzerland.
Hernández, N., Parra, I., Corrales, H., Izquierdo, R., Ballardini, A. L., Salinas, C., & García, I. (2021). WiFiNet: WiFi-based Indoor Localisation using CNNs. Expert Systems with Applications, 177(2021), 114906.
Hoang, M. T., Yuen, B., Dong, X., Lu, T., Westendorp, R., & Reddy, K. (2019). Recurrent Neural Networks for Accurate RSSI Indoor Localization. IEEE Internet of Things Journal, 6(6), 10639–10651.
Holcer, S., Torres-Sospedra, J., Gould, M., & Remolar, I. (2020). Privacy in Indoor Positioning Systems: A Systematic Review. International Conference on Localization and GNSS, ICL-GNSS 2020.
Hu, G., Feldhaus, P., Feng, Y., Wang, S., Zheng, J., Duan, H., & Gu, J. (2019). Accuracy Improvement of Indoor Real-Time Location Tracking Algorithm for Smart Supermarket Based on Ultra-Wideband. International Journal of Pattern Recognition and Artificial Intelligence, 33(12).
Huang, C., Hendeby, G., Fourati, H., Prieur, C., & Skog, I. (2024). MAINS: A Magnetic-Field-Aided Inertial Navigation System for Indoor Positioning. IEEE Sensors Journal, 24(9), 15156–15166.
Huang, J., Junginger, S., Liu, H., & Thurow, K. (2023). Indoor Positioning Systems of Mobile Robots: A Review. Robotics, 12(2), 47.
Ismail, N. F., Akmal, S., Mohd, Massila Kamalrudin, Amirul Affiq, Hakimi, H., & Azmi, S. S. (2024). Agile Decision-Making as an Alternative for Decision Making’s Complexities in Information Management to Flood Rescue and Recovery: A Systematic Literature Review. Journal of Advanced Research in Applied Sciences and Engineering Technology, 89–105. https://doi.org/10.37934/araset.58.1.89105
Jespersen, M. H., Serup, D. E., Nielsen, M. H., Hannesbo, M. H., Williams, R. J., Nielsen, K. S., Mikkelsen, J. H., & Shen, M. (2018). An Indoor Multipath-Assisted Single-Anchor UWB Localization Method. IEEE MTT-S International Wireless Symposium (IWS), 1–3.
Jiménez, A. R., Seco, F., Peltola, P., & Espinilla, M. (2018). Location of Persons using Binary Sensors and BLE Beacons for Ambient Assistive Living. International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24–27.
Jin, F., Liu, K., Zhang, H., Ng, J. K. Y., Guo, S., Lee, V. C. S., & Son, S. H. (2020). Toward Scalable and Robust Indoor Tracking: Design, Implementation, and Evaluation. IEEE Internet of Things Journal, 7(2), 1192–1204.
Kazaz, T., Janssen, G. J. M., & Van Der Veen, A. J. (2019). Time Delay Estimation from Multiband Radio Channel Samples in Nonuniform Noise. Asilomar Conference on Signals, Systems and Computers, 2019-November, 1237–1241.
Koh, D. Y., Han, T. S., & Zubah, J. (2021). Electromagnetic Wave Sensor for Proximity Target Detection Under Radio and Radar Coexistence at 2.4-GHz ISM Band. IEEE Sensors, 2021, 1–4.
Kulmer, J., Hinteregger, S., Grosswindhager, B., Rath, M., Bakr, M. S., Leitinger, E., & Witrisal, K. (2017). Using DecaWave UWB Transceivers for High-Accuracy Multipath-Assisted Indoor Positioning. International Conference on Communications Workshops, 1239–1245.
Kulmer, J., Leitinger, E., Meissner, P., Hinteregger, S., & Witrisal, K. (2016). Cooperative localization and tracking using multipath channel. International Conference on Localization and GNSS (ICL-GNSS), 1–6.
Kusche, R., Schmidt, S. O., & Hellbruck, H. (2021). Indoor Positioning via Artificial Magnetic Fields. IEEE Transactions on Instrumentation and Measurement, 70(2021), 8502509.
Kwak, M., Hamm, C., Park, S., & Kwon, T. T. (2019). Magnetic Field based Indoor Localization System: A Crowdsourcing Approach. International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1–8.
Le, Y., Jin, S., Zhang, H., Shi, W., & Yao, H. (2021). Fingerprinting Indoor Positioning Method Based on Kernel Ridge Regression with Feature Reduction. Wireless Communications and Mobile Computing, 2021(1), 6631585.
Leitinger, E., Grebien, S., Witrisal, K., Li, X., & Tufvesson, F. (2018). On the Use of MPC Amplitude Information in Radio Signal Based SLAM. IEEE Statistical Signal Processing Workshop (SSP), 633–637.
Leria, V. J., & Lohan, E.-Si. (2012). Timing-based location estimation for OFDM signals with application in LTE, WLAN and WIMAX. International Conference on Localization and GNSS, 1–5.
Li, B., Zhao, K., & Shen, X. (2020). Dilution of Precision in Positioning Systems using Both Angle of Arrival and Time of Arrival Measurements. IEEE Access, 8, 192506–192516.
Li, K., Gong, Q., Ren, Y., Li, Y., Han, Y., Pang, C., & Kong, H. (2022). Magnetic Field Positioning Technology of Indoor Sports Bodies. IEEE Sensors Journal, 22(1), 219–228.
Li, X. (2019). Cellular Base Station Assisted Indoor Positioning. IEEE Transactions on Aerospace and Electronic Systems, 55(2), 592–606.
Li, Y., Kambhamettu, R. H., Hu, Y., & Zhang, R. (2022). ImPos: An Image-Based Indoor Positioning System. Annual Consumer Communications & Networking Conference (CCNC), 144–150.
Liang, Q., & Liu, M. (2020). An Automatic Site Survey Approach for Indoor Localization Using a Smartphone. IEEE Transactions on Automation Science and Engineering, 17(1), 191–206.
Liu, Z., Chen, L., Zhou, X., Shen, N., & Chen, R. (2023). Multipath tracking with LTE signals for accurate TOA estimation in the application of indoor positioning. Geo-Spatial Information Science, 26(1), 31–43.
Ljungzell, E. (2018). Multipath-assisted Single-anchor Outdoor Positioning in Urban Environments. Linkoping University.
Maheepala, M., Kouzani, A. Z., & Joordens, M. A. (2020). Light-Based Indoor Positioning Systems: A Review. IEEE Sensors Journal, 20(8), 3971–3995.
Manap, Z., Awang Md Isa, A., Zainuddin, S., Mohd Sultan, J., & Markarian, G. (2023). Analysis of Single Transmitter 3D Indoor Positioning based on Virtual Transmitter Concept. Przeglad Elektrotechniczny, 2023(9), 179.
Manap, Z., Isa, A. A. M., Mohd Zain, A. S., Darsono, A. M., & Othman, M. H. (2018). Implementation of Particle Filtering in TDOA Positioning. Journal of Telecommunication, Electronic and Computer Engineering, 10(2–8), 103–107.
Menta, E. Y., Malm, N., Jantti, R., Ruttik, K., Costa, M., & Leppanen, K. (2019). On the Performance of AoA-Based Localization in 5G Ultra-Dense Networks. IEEE Access, 7, 33870–33880.
Minne, K., Macoir, N., Rossey, J., Van Den Brande, Q., Lemey, S., Hoebeke, J., & De Poorter, E. (2019). Experimental Evaluation of UWB Indoor Positioning for Indoor Track Cycling. Sensors, 19(9), 2041.
Miramirkhani, F., & Uysal, M. (2015). Channel Modeling and Characterization for Visible Light Communications. IEEE Photonics Journal, 7(6), 1–16.
Morar, A., Moldoveanu, A., Mocanu, I., Moldoveanu, F., Radoi, I. E., Asavei, V., Gradinaru, A., & Butean, A. (2020). A Comprehensive Survey of Indoor Localization Methods based on Computer Vision. Sensors (Switzerland), 20(9), 2641.
Mosleh, M. F., & Daraj, A. K. (2021). Evaluation of Dynamic Localization System Based on UWB and Wi-Fi for Indoor Environments. Journal of Physics: Conference Series, 1773(1), 012003.
Mosleh, M. F., Zaiter, M. J., & Hashim, A. H. (2021). Position Estimation Using Trilateration based on ToA/RSS and AoA Measurement. Journal of Physics: Conference Series, 1773(1), 012002.
Motroni, A., Buffi, A., & Nepa, P. (2021). A Survey on Indoor Vehicle Localization through RFID Technology. IEEE Access, 9, 17921–17942.
Naser, R. S., Lam, M. C., Qamar, F., & Zaidan, B. B. (2023). Smartphone-Based Indoor Localization Systems: A Systematic Literature Review. In Electronics (Switzerland) (Vol. 12, Issue 8). MDPI.
Poulose, A., & Han, D. S. (2021). Hybrid Deep Learning Model Based Indoor Positioning using Wi-Fi RSSI Heat Maps for Autonomous Applications. Electronics (Switzerland), 10(1), 1–15.
Qi, L., Liu, Y., Yu, Y., Chen, L., & Chen, R. (2024). Current Status and Future Trends of Meter-Level Indoor Positioning Technology: A Review. Remote Sensing, 16(2).
Rahman, A. B. M. M., Li, T., & Wang, Y. (2020). Recent Advances in Indoor Localization via Visible Lights: A Survey. Sensors (Switzerland), 20(5), 1382.
Rahman, M. M., Moghtadaiee, V., & Dempster, A. G. (2017). Design of Fingerprinting Technique for Indoor Localization using AM Radio Signals. International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2017-January, 1–7.
Rath, M., Kulmer, J., Bakr, M. S., Groswindhager, B., & Witrisal, K. (2017). Multipath-assisted indoor positioning enabled by directional UWB sector antennas. IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2017-July, 1–5.
Ridolfi, M., Vandermeeren, S., Defraye, J., Steendam, H., Gerlo, J., Clercq, D. De, Hoebeke, J., & Poorter, E. De. (2018). Experimental Evaluation of UWB Indoor Positioning for Sport Postures. Sensors (Switzerland), 18(1), 168.
Rizk, H. (2019). Device-invariant Cellular-based Indoor Localization System using Deep Learning. Proceedings of the ACM MobiSys-RisingStarsForum, 19–23.
Rizk, H., Abbas, M., & Youssef, M. (2021). Device-independent cellular-based indoor location tracking using deep learning. Pervasive and Mobile Computing, 75.
Rizk, H., & Youssef, M. (2019). MonoDCell: A Ubiquitous and Low-Overhead Deep Learning-based Indoor Localization with Limited Cellular Information. Proceedings of the ACM International Symposium on Advances in Geographic Information Systems, 109–118.
Sarbazi, E., Uysal, M., Abdallah, M., & Qaraqe, K. (2014). Indoor Channel Modelling and Characterization for Visible Light Communications. International Conference on Transparent Optical Networks, 1–4.
Sartayeva, Y., Chan, H. C. B., Ho, Y. H., & Chong, P. H. J. (2023). A survey of indoor positioning systems based on a six-layer model. Computer Networks, 237.
Sesyuk, A., Ioannou, S., & Raspopoulos, M. (2022). A Survey of 3D Indoor Localization Systems and Technologies. Sensors, 22(23), 9380.
Shang, S., & Wang, L. (2022). Overview of WiFi Fingerprinting-based Indoor Positioning. IET Communications, 16(7), 725–733.
Sharma, S., Jha, R., & Kumar, A. (2023). Path-Loss Model Evaluation for 6G in Indoor Propagation. World Conference on Communication and Computing (WCONF), 1–6.
Song, X., Fan, X., Xiang, C., Ye, Q., Liu, L., Wang, Z., He, X., Yang, N., & Fang, G. (2019). A Novel Convolutional Neural Network Based Indoor Localization Framework with WiFi Fingerprinting. IEEE Access, 7, 110698–110709.
Subedi, S., & Pyun, J. Y. (2020). A Survey of Smartphone-based Indoor Positioning System using RF-based Wireless Technologies. In Sensors (Switzerland) (Vol. 20, Issue 24, pp. 1–32). MDPI AG.
Tamburri, D. A. (2020). Design principles for the General Data Protection Regulation (GDPR): A formal concept analysis and its evaluation. Information Systems, 91, 101469.
Tariq, Z. Bin, Cheema, D. M., Kamran, M. Z., & Naqvi, I. H. (2017). Non-GPS positioning systems: A survey. ACM Computing Surveys, 50(4), 57.
Te Hennepe, D. H., Van Den Berg, J. L., & Karagiannis, G. (2012). Impact of Relay Station Positioning on LTE Uplink Performance at Flow Level. IEEE Global Telecommunications Conference, 1586–1592.
Tong, X., Wan, Y., Li, Q., Tian, X., & Wang, X. (2021). CSI Fingerprinting Localization with Low Human Efforts. IEEE/ACM Transactions on Networking, 29(1), 372–385.
Tseng, P. H., Chan, Y. C., Lin, Y. J., Lin, D. B., Wu, N., & Wang, T. M. (2017). Ray-Tracing-Assisted Fingerprinting Based on Channel Impulse Response Measurement for Indoor Positioning. IEEE Transactions on Instrumentation and Measurement, 66(5), 1032–1045.
Ulmschneider, M., & Gentner, C. (2016). Multipath Assisted Positioning for Pedestrians using LTE Signals. Proceedings of the IEEE/ION Position, Location and Navigation Symposium, 386–392.
Ulmschneider, M., Gentner, C., Jost, T., & Dammann, A. (2017a). Association of Transmitters in Multipath-Assisted Positioning. IEEE Global Communications Conference, 1–7.
Ulmschneider, M., Gentner, C., Jost, T., & Dammann, A. (2017b). Multiple Hypothesis Data Association for Multipath-Assisted Positioning. Workshop on Positioning, Navigation and Communications, 1–6.
Ulmschneider, M., Gentner, C., Jost, T., & Dammann, A. (2018). Rao-Blackwellized Gaussian Sum Particle Filtering for Multipath Assisted Positioning. Journal of Electrical and Computer Engineering, 2018(1), 4761601.
Ulmschneider, M., Raulefs, R., Gentner, C., & Walter, M. (2016). Multipath Assisted Positioning in Vehicular Applications. Workshop on Positioning, Navigation and Communication, 1–6.
Veenoth, A., Shankarvelu, L., Hakimi, H., Marlia, Z., & Octaviani, D. (2023). Food Donation Application to Improve the Distribution and Verification Process Within Selangor: Feedback. Journal of Applied Technology and Innovation (e-ISSN: 2600-7304), 7(3), 7.
Wang, J., Tang, Y., Munoz-Ferreras, J. M., Gomez-Garcia, R., & Li, C. (2018). An Improved Indoor Localization Solution using a Hybrid UWB-Doppler System with Kalman filter. IEEE Radio and Wireless Symposium (RWS), 2018-January, 181–183.
Wang, X., Chen, Z., Zhang, S., & Zhu, J. (2020). Super-Resolution Based Fingerprint Augment for Indoor WiFi Localization. IEEE Global Communications Conference (GLOBECOM), 2020-January, 1–6.
Wang, X., Gao, L., Mao, S., & Pandey, S. (2017). CSI-Based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Transactions on Vehicular Technology, 66(1), 763–776.
Wielandt, S., & De Strycker, L. (2017). Indoor Multipath Assisted Angle of Arrival Localization. Sensors (Switzerland), 17(11), 29.
Wielandt, S., De Strycker, L., Strycker, L., & De Strycker, L. (2017). Indoor multipath assisted angle of arrival localization. Sensors (Switzerland), 17(11), 29.
Wielandt, S., Thoen, B., & De Strycker, L. (2018). Experimental Evaluation of a Single Anchor Multipath Assisted Indoor Angle of Arrival Localization System in the 2.4 GHz and 5 GHz Band. International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1–7.
Witrisal, K., Hinteregger, S., Kulmer, J., Leitinger, E., & Meissner, P. (2016). High-accuracy positioning for indoor applications: RFID, UWB, 5G, and beyond. IEEE International Conference on RFID, 1–7.
Witrisal, K., Meissner, P., Leitinger, E., Shen, Y., Gustafson, C., Tufvesson, F., Haneda, K., Dardari, D., Molisch, A. F., Conti, A., & Win, M. Z. (2016). High-Accuracy Localization for Assisted Living: 5G Systems will Turn Multipath Channels from Foe to Friend. IEEE Signal Processing Magazine, 33(2), 59–70.
Wye, K. F. P., Zakaria, S. M. M. S., Kamarudin, L. M., Zakaria, A., Ahmad, N. B., & Kamarudin, K. (2021). RSS-based Fingerprinting Localization with Artificial Neural Network. Journal of Physics: Conference Series, 1755(1), 012033.
Wysocki, M., Nicpo?, R., Trzaska, M., & Czapiewska, A. (2022). Research of Accuracy of RSSI Fingerprint-Based Indoor Positioning BLE System. Przeglad Elektrotechniczny, 98(9), 86–89.
Xiao, D., Yuxiaoyu, & Yang, D. (2012). A Novel Downlink ICIC Method Based on User Position in LTE-Advanced Systems. IEEE Vehicular Technology Conference (VTC Fall), 1–5.
Xie, C., Guan, W., Wu, Y., Fang, L., & Cai, Y. (2018). The LED-ID Detection and Recognition Method Based on Visible Light Positioning Using Proximity Method. IEEE Photonics Journal, 10(2), 7902116.
Yan, S., Su, Y., Sun, A., Ji, Y., Xiao, J., & Chen, X. (2022). Low-cost and Lightweight Indoor Positioning Based on Computer Vision. ACM International Conference Proceeding Series, 169–175.
Yang, H., Vijayakumar, P., Shen, J., & Gupta, B. B. (2022). A location-based privacy-preserving oblivious sharing scheme for indoor navigation. Future Generation Computer Systems, 137, 42–52.
Yang, R., Yang, X., Wang, J., Zhou, M., Tian, Z., & Li, L. (2022). Decimeter Level Indoor Localization Using WiFi Channel State Information. IEEE Sensors Journal, 22(6), 4940–4950.
Yang, Y., Liu, J., Wang, W., Cao, Y., & Li, H. (2021). Incorporating SLAM and Mobile Sensing for Indoor CO2 Monitoring and Source Position Estimation. Journal of Cleaner Production, 291(2021), 1–13.
Ye, X., Yin, X., Cai, X., Perez Yuste, A., & Xu, H. (2017). Neural-Network-Assisted UE Localization Using Radio-Channel Fingerprints in LTE Networks. IEEE Access, 5, 12071–12087.
Yoo, J. (2020). Change Detection of RSSI Fingerprint Pattern for Indoor Positioning System. IEEE Sensors Journal, 20(5), 2608–2615.
Yoon, P. K., Zihajehzadeh, S., Kang, B. S., & Park, E. J. (2017). Robust Biomechanical Model-Based 3-D Indoor Localization and Tracking Method Using UWB and IMU. IEEE Sensors Journal, 17(4), 1084–1096.
You, Y., & Wu, C. (2020). Indoor Positioning System with Cellular Network Assistance Based on Received Signal Strength Indication of Beacon. IEEE Access, 8, 6691–6703.
Yu, K., Wen, K., Li, Y., Zhang, S., & Zhang, K. (2019). A Novel NLOS Mitigation Algorithm for UWB Localization in Harsh Indoor Environments. IEEE Transactions on Vehicular Technology, 68(1), 686–699.
Zafari, F., Gkelias, A., & Leung, K. K. (2019). A Survey of Indoor Localization Systems and Technologies. IEEE Communications Surveys and Tutorials, 21(3), 2568–2599.
Zhang, J., Han, G., Sun, N., & Shu, L. (2017). Path-Loss-Based Fingerprint Localization Approach for Location-based Services in Indoor Environments. IEEE Access, 5, 13756–13769.
Zhang, L., Zhao, C., Wang, Y., & Dai, L. (2020). Fingerprint-based Indoor Localization using Weighted K-Nearest Neighbor and Weighted Signal Intensity. ACM International Conference Proceeding Series, 185–191.
Zheng, H., Zhong, X., & Liu, P. (2020). RSS-based Indoor Passive Localization Using Clustering and Filtering in a LTE Network. IEEE Vehicular Technology Conference, 2020-May, 1–6.
Zheng, Y., Li, Q., Wang, C., Li, X., & Yang, B. (2021). A Magnetic-Based Indoor Positioning Method on Fingerprint and Confidence Evaluation. IEEE Sensors Journal, 21(5), 5932–5943.
Zhou, B., Xie, D., Chen, S., Li, C., & Mo, H. (2022). LI-SLAM: Fusing LiDAR and Infrared Camera for Simultaneous Localization and Mapping. International Conference on Indoor Positioning and Indoor Navigation (IPIN-WiP), 1–11.
Zou, H., Jin, M., Jiang, H., Xie, L., & Spanos, C. J. (2017). WinIPS: WiFi-based Non-Intrusive Indoor Positioning System with Online Radio Map Construction and Adaptation. IEEE Transactions on Wireless Communications, 16(12), 8118–8130.
Manap, Z., Isa, A. A. M., Darsono, A. M., & Zainuddin, S. (2025). A Review of Technologies and Techniques for Indoor Positioning Systems. International Journal of Academic Research in Business and Social Sciences, 15(2), 430–456.
Copyright: © 2025 The Author(s)
Published by HRMARS (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode