Journal Screenshot

International Journal of Academic Research in Business and Social Sciences

Open Access Journal

ISSN: 2222-6990

Investigating the Flexibility of ZnO Nanorod Growth Parameters for Humidity Sensor Design

Haziezol Helmi Mohd Yusof, Abd Majid Darsono, Hazli Rafis Abdul Rahim, Kaharudin Dimyati, Sulaiman Wadi Harun

http://dx.doi.org/10.6007/IJARBSS/v15-i2/24753

Open access

A study on the effect of ZnO nanorod growth conditions on humidity sensing is presented. Glass substrates were coated with triangular ZnO nanorods using a hydrothermal method, with growth durations of 5, 10, and 15 hours, and coating lengths in triangular shape varying from 1 mm to 13 mm. A commercial LED and photodiode were utilized in the measurement setup, functioning as the light source and photodetector, respectively, and interfaced with an Arduino for data processing. Humidity experiments were conducted in a controlled chamber using different combinations of these growth parameters. The results indicated that a combination of 10 hours growth time and 7 mm coating length produced a sensing response comparable to that of a 15-hour growth time and 4 mm coating length at 80% relative humidity. This demonstrates that optimal sensor performance can be achieved through various fabrication settings, suggesting that flexibility in process parameters allows for more efficient and cost-effective sensor design without sacrificing the sensor performance. By offering multiple viable fabrication paths, the process becomes more scalable and versatile, allowing for the design of sensor devices that maintain high sensitivity while optimizing manufacturing efficiency. This is crucial for improving the practicality of ZnO-based humidity sensors in commercial applications.

Anusha, J. R., Kim, H.-J., Fleming, A. T., Das, S. J., Yu, K.-H., Kim, B. C., & Raj, C. J. (2014). Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor. Sensors and Actuators B: Chemical, 202, 827-833. https://doi.org/https://doi.org/10.1016/j.snb.2014.06.024
Baruah, S., & Dutta, J. (2009a). Effect of seeded substrates on hydrothermally grown ZnO nanorods. Journal of Sol-Gel Science and Technology, 50(3), 456-464. https://doi.org/10.1007/s10971-009-1917-2
Baruah, S., & Dutta, J. (2009b). Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 10(1), 013001. https://doi.org/10.1088/1468-6996/10/1/013001
Batumalay, M., Harith, Z., Rafaie, H. A., Ahmad, F., Khasanah, M., Harun, S. W., Nor, R. M., & Ahmad, H. (2014). Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity. Sensors and Actuators A: Physical, 210, 190-196. https://doi.org/https://doi.org/10.1016/j.sna.2014.01.035
Bora, T., Fallah, H., Chaudhari, M., Apiwattanadej, T., Harun, S. W., Mohammed, W. S., & Dutta, J. (2014). Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing. Sensors and Actuators B: Chemical, 202, 543-550. https://doi.org/https://doi.org/10.1016/j.snb.2014.05.097
Bora, T., Sathe, P., Laxman, K., Dobretsov, S., & Dutta, J. (2017). Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water. Catalysis Today, 284, 11-18. https://doi.org/https://doi.org/10.1016/j.cattod.2016.09.014
Cao, H., Zhao, Y. G., Ong, H. C., Ho, S. T., Dai, J. Y., Wu, J. Y., & Chang, R. P. H. (1998). Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Applied Physics Letters, 73(25), 3656-3658. https://doi.org/10.1063/1.122853
Chang, C.-C., Chiu, N.-F., Lin, D. S., Chu-Su, Y., Liang, Y.-H., & Lin, C.-W. (2010). High-Sensitivity Detection of Carbohydrate Antigen 15-3 Using a Gold/Zinc Oxide Thin Film Surface Plasmon Resonance-Based Biosensor. Analytical Chemistry, 82(4), 1207-1212. https://doi.org/10.1021/ac901797j
Chauhan, P. (2016). Nanomaterials for Sensing Applications. Journal of Nanomedicine Research, 3(5). https://doi.org/10.15406/jnmr.2016.03.00067
Ebbesen, T. W., & Ajayan, P. M. (1992). Large-scale synthesis of carbon nanotubes. Nature, 358(6383), 220-222. https://doi.org/10.1038/358220a0
Fallah, H., Chaudhari, M., Bora, T., Harun, S. W., Mohammed, W. S., & Dutta, J. (2013). Demonstration of side coupling to cladding modes through zinc oxide nanorods grown on multimode optical fiber. Optics Letters, 38(18), 3620-3622. https://doi.org/10.1364/OL.38.003620
Hafiz Jali, M., Rafis Abdul Rahim, H., Helmi Mohd Yusof, H., Md Johari, M. A., Thokchom, S., & Wadi Harun, S. (2019). Optimization of ZnO nanorods growth duration for humidity sensing application. Journal of Physics: Conference Series, 1371(1), 012005. https://doi.org/10.1088/1742-6596/1371/1/012005
Hakimi, H., & Nabilah, A. (2024). Book Recommendation System (BRS) Using Collaboration Filtering Machine Learning. In Opportunities and Risks in AI for Business Development: Volume 1 (pp. 993-1002). Cham: Springer Nature Switzerland.
Hazli Rafis Bin Abdul, R., Muhammad Quisar Bin, L., Sulaiman Wadi, H., Gabor Louis, H., Karel, S., Waleed Soliman, M., & Joydeep, D. (2016). Applied light-side coupling with optimized spiral-patterned zinc oxide nanorod coatings for multiple optical channel alcohol vapor sensing. Journal of Nanophotonics, 10(3), 036009. https://doi.org/10.1117/1.JNP.10.036009
Husain, I., Choudhury, A., & Nath, P. (2013). Fiber-Optic Volumetric Sensor Based on Beer-Lambert Principle. IEEE Sensors Journal, 13(9), 3345-3346. https://doi.org/10.1109/JSEN.2013.2272795
Ismail, N. F., Akmal, S., Mohd, Massila Kamalrudin, Amirul Affiq, Hakimi, H., & Azmi, S. S. (2024). Agile Decision-Making as an Alternative for Decision Making’s Complexities in Information Management to Flood Rescue and Recovery: A Systematic Literature Review. Journal of Advanced Research in Applied Sciences and Engineering Technology, 89–105. https://doi.org/10.37934/araset.58.1.89105
Jiang, T., Zhou, X., Zhang, J., Zhu, J., Li, X., & Li, T. (2006, 22-25 Oct. 2006). Study of humidity properties of Zinc Oxide modified Porous Silicon. SENSORS, 2006 IEEE,
Khijwania, S., Srinivasan, K., & Singh, J. (2005). Performance optimized optical fiber sensor for humidity measurement. Optical Engineering - OPT ENG, 44. https://doi.org/10.1117/1.1870753
Kim, H. K., Sathaye, S., Hwang, Y. K., Jhung, S. H., Hwang, J. S., Kwon, S. H., Park, S.-E., & Chang, J. (2005). Humidity Sensing Properties of Nanoporous TiO2-SnO2 Ceramic Sensors. Bulletin- Korean Chemical Society, 26, 1881-1884. https://doi.org/10.5012/bkcs.2005.26.11.1881
Kitsomboonloha, R., Baruah, S., Myint, M. T. Z., Subramanian, V., & Dutta, J. (2009). Selective growth of zinc oxide nanorods on inkjet printed seed patterns. Journal of Crystal Growth, 311(8), 2352-2358. https://doi.org/https://doi.org/10.1016/j.jcrysgro.2009.02.028
Kong, T., Chen, Y., Ye, Y., Zhang, K., Wang, Z., & Wang, X. (2009). An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sensors and Actuators B: Chemical, 138(1), 344-350. https://doi.org/https://doi.org/10.1016/j.snb.2009.01.002
Krätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: a new form of carbon. Nature, 347(6291), 354-358. https://doi.org/10.1038/347354a0
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. https://doi.org/10.1038/359710a0
Kulkarni, S. S., & Shirsat, M. D. (2015). Optical and structural properties of zinc oxide nanoparticles. International Journal of Advanced Research in Physical Science, 2(1), 14-18.
Kumar, S. A., & Chen, S. M. (2008). Nanostructured Zinc Oxide Particles in Chemically Modified Electrodes for Biosensor Applications. Analytical Letters, 41(2), 141-158. https://doi.org/10.1080/00032710701792612
Lai, H.-Y., & Chen, C.-H. (2012). Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In2O3 flower-like nanobundles [10.1039/C2JM31180A]. Journal of Materials Chemistry, 22(26), 13204-13208. https://doi.org/10.1039/C2JM31180A
Lee, C.-Y., Chiang, C.-M., Wang, Y.-H., & Ma, R.-H. (2007). A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sensors and Actuators B: Chemical, 122(2), 503-510. https://doi.org/https://doi.org/10.1016/j.snb.2006.06.018
Liu, C., Kuang, Q., Xie, Z., & Zheng, L. (2015). The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the {221} high-index faceted SnO2 octahedra [10.1039/C5CE01162K]. CrystEngComm, 17(33), 6308-6313. https://doi.org/10.1039/C5CE01162K
Lokman, A., Arof, H., Harun, S. W., Harith, Z., Rafaie, H. A., & Nor, R. M. (2016). Optical Fiber Relative Humidity Sensor Based on Inline Mach–Zehnder Interferometer With ZnO Nanowires Coating. IEEE Sensors Journal, 16(2), 312-316. https://doi.org/10.1109/JSEN.2015.2431716
Mohd Fudzi, L., Zainal, Z., Lim, H. N., Chang, S.-K., Holi, A. M., & Sarif@Mohd Ali, M. (2018). Effect of Temperature and Growth Time on Vertically Aligned ZnO Nanorods by Simplified Hydrothermal Technique for Photoelectrochemical Cells. Materials, 11(5).
Patil, Y. S., Raghuvanshi, F., & Patil, I. (2016). Zinc oxide nanorods as H 2 S gas sensor. Int. J. Sci. Res., 5(7), 1140-1144.
Promnimit, S., Baruah, S., Lamdu, U., & Dutta, J. (2013). Hydrothermal Growth of ZnO Hexagonal Nanocrystals: Effect of Growth Conditions. Journal of Nano Research, 21, 57-63. https://doi.org/10.4028/www.scientific.net/JNanoR.21.57
Rackauskas, S., Barbero, N., Barolo, C., & Viscardi, G. (2017). ZnO Nanowire Application in Chemoresistive Sensing: A Review. Nanomaterials, 7(11).
Rahim, H. R. B. A., Manjunath, S., Fallah, H., Thokchom, S., Harun, S. W., Mohammed, W. S., Hornyak, L. G., & Dutta, J. (2016). Side coupling of multiple optical channels by spiral patterned zinc oxide coatings on large core plastic optical fibers. Micro & Nano Letters, 11(2), 122-126. https://doi.org/https://doi.org/10.1049/mnl.2015.0452
Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv, 7(9), 1063-1077. https://doi.org/10.1517/17425247.2010.502560
Ruchika, & Kumar, A. (2015). Performance analysis of Zinc oxide based alcohol sensors. International Journal of Applied Science and Engineering Research, 4, 427-436.
Sabri, N., Aljunid, S. A., Salim, M. S., Ahmad, R. B., & Kamaruddin, R. (2013). Toward Optical Sensors: Review and Applications. Journal of Physics: Conference Series, 423(1), 012064. https://doi.org/10.1088/1742-6596/423/1/012064
Shimizu, Y., Kuwano, N., Hyodo, T., & Egashira, M. (2002). High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd. Sensors and Actuators B: Chemical, 83(1), 195-201. https://doi.org/https://doi.org/10.1016/S0925-4005(01)01040-1
Shinde, S. S., Shinde, P. S., Bhosale, C. H., & Rajpure, K. Y. (2008). Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. Journal of Physics D: Applied Physics, 41(10), 105109. https://doi.org/10.1088/0022-3727/41/10/105109
Shinzo, M., Osamu, S., Takashi, A., & Masayuki, M. (2003). A plastic optical fibre sensor for real-time humidity monitoring. Measurement Science and Technology, 14(6), 746. https://doi.org/10.1088/0957-0233/14/6/306
Spencer, M. J. S. (2012). Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations. Progress in Materials Science, 57(3), 437-486. https://doi.org/https://doi.org/10.1016/j.pmatsci.2011.06.001
Suchorska-Wo?niak, P., Nawrot, W., Rac, O., Fiedot, M., & Teterycz, H. (2016). Improving the sensitivity of the ZnO gas sensor to dimethyl sulfide. IOP Conference Series: Materials Science and Engineering, 104(1), 012030. https://doi.org/10.1088/1757-899X/104/1/012030
Sugunan, A., Warad, H. C., Boman, M., & Dutta, J. (2006). Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 39(1), 49-56. https://doi.org/10.1007/s10971-006-6969-y
Tang, C.-F., Kumar, S. A., & Chen, S.-M. (2008). Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules. Analytical Biochemistry, 380(2), 174-183. https://doi.org/https://doi.org/10.1016/j.ab.2008.06.004
Yeo, T. L., Sun, T., & Grattan, K. T. V. (2008). Fibre-optic sensor technologies for humidity and moisture measurement. Sensors and Actuators A: Physical, 144(2), 280-295. https://doi.org/https://doi.org/10.1016/j.sna.2008.01.017
Yusof, Junaidah & d'Arqom, Annette & Surjaningrum, Endang & Panatik, Siti & Noor, Sabariah & Jalil, Nurul Iman & Harun, Mohd & Hakimi, Halimaton. (2025). The psychosocial factors of blood donation during the pandemic: Strategies for sustainable blood supply. Journal of Infrastructure, Policy and Development. 9. 9677. 10.24294/jipd9677.
Zamarreño, C. R., Hernaez, M., Del Villar, I., Matias, I. R., & Arregui, F. J. (2010). Tunable humidity sensor based on ITO-coated optical fiber. Sensors and Actuators B: Chemical, 146(1), 414-417. https://doi.org/https://doi.org/10.1016/j.snb.2010.02.029

Yusof, H. H. M., Darsono, A. M., Rahim, H. R. A., Dimyati, K., & Harun, S. W. (2025). Investigating the Flexibility of ZnO Nanorod Growth Parameters for Humidity Sensor Design. International Journal of Academic Research in Business and Social Sciences, 15(2), 688–701.