ISSN: 2222-6990
Open access
This article is a review on attributes, models and tools used to solve the problem of predicting students' academic performance. Based on the reference throughout 2009, the attributes used include demographic, academic grades, school related and social attributes. The academic score attributes are the results of the percipient along their studies, while the school-related attributes are result for few subject taken in high school. Demographic and social attributes are family background and the daily interactions of respondents. These tools are supporting a lot of rule mining algorithms like clustering, classification and association, to use on datasets of different types.
Abdulazeez, Y., & Ayuba, J. (2019). Classifiers ensemble and synthetic minority oversampling techniques for academic performance prediction. International Journal of Informatics and Communication Technology (IJ-ICT), Vol.8, No.3.
Abou, G., Abou, E. -S., Salama, S. M., & Hussein, W. (2019). Multi-Dimensional Analysis to Predict Students’ Grades in Higher Education. International Journal of Emerging Technologies in Learning (IJET), 14(02), 4. https://doi.org/10.3991/ijet.v14i02.9905
Aderibigbe, I. A., & Odunayo, S. (2019). The impact of engineering students' performance in the first three years on their graduation result using educationaldata mining. Heliyon. Volume 5, Issue 2, Article e01250.
Alarape, M. A., & Adewole, K. S. (2019). Students’ Academic Performance and Dropout Prediction. Malaysian Journal of Computing, 4(2), 278. https://doi.org/10.24191/ mjoc.v4i2.6701
Alsuwaiket, M., Blasi, A., & Al-Msie'Deen, R. F. (2019). Formulating module assessment for improved academic performance predictability in higher education. Engineering, Technology and Applied Science Research, Vol. 9.
Álvaro, F., & Cabral, B. (2019). Preventing failures by predicting students’ grades through an analysis of logged data of online interactions. 10.5220/0008356604910499.
Ammar, A., Erbug, C., & Rami, S. A. (2019). EMT: Ensemble Meta-Based Tree model for predicting student performance. Scientific Programming. 10.1155/2019/3610248.
Anuraag, M. A., Masood, & Mohanchandra, K. (2020). Brain Operated Wheelchair Using a Single Electrode EEG Device and BCI. International Journal of Artificial Intelligence, 7(1).
Baba,M. S., Panessai, I. Y., & Iksan, N. (2019). Solving Rich Vehicle Routing Problem Using Three Steps Heuristic. International Journal of Artificial Intelligence, 1(1).
Bozic, L., Dragana & Chmelíková, G. (2019). Applying predictive analytics in ESP courses based on students' writing. Zbornik Radova Filozofskog Fakulteta u Prištini, Volume 49.
Desai, SR, S., & Singh, M. (2020). Survey on Early Detection of Alzhiemer’s Disease Using Capsule Neural Network. International Journal of Artificial Intelligence, 7(1).
Gabriela, C., Andrei, M., & Liana, M. (2019). S PRAR: A novel relational association rule mining classification model applied for academic performance prediction. Procedia Computer Science, Volume 159, 20-29.
Graham, P., Patricia, B. M., Claudio, E. M. G., Ana, F. T., & Angélica, M. U. A. (2019). Modulation of striatum based non-declarative and medial temporal lobe based declarative memory predicts academic achievement at university level. Trends in Neuroscience and Education, Volume 14, 1-10.
Harvey, J., & Kumar, S. (2019). A practical model for educators to predict student performance in k-12 education using machine learning. 3004-3011.10.1109/SSCI44817.2019.9003147.
Huang, L., Wang, C. -D., Chao, H. -Y., Lai, J. -H. & Y, P. S. (2019). A score prediction approach for optional course recommendation via cross-user-domain collaborative filtering. IEEE Access, 7, 19550–19563. https://doi.org/10.1109/access.2019.2897979
Imran, M., Shahzad, L., Danish, M., & Shah, M. S. (2019). Student academic performance prediction using supervised learning techniques. International Journal of Emerging Technologies in Learning, Vol 14, 14.
Jianan, L., & Abas, A. (2020). Development of Human-Computer Interactive Interface for Intelligent Automotive. International Journal of Artificial Intelligence, 7(2).
Jorda, E. (2019). Predictive model for the academic performance of the engineering students using CHAID and C5.0 algorithms. International Journal of Engineering Research and Technology, Volume 12, Number 6, pp. 917-928.
Kangungu, S. M., & Yatim, M. H. (2020). Teaching Programming Using the Robot-Based Learning Approach. International Journal of Artificial Intelligence, 7(2).
Kumar, M., & Salal, Y. K. (2019). Systematic review of predicting student's performance in academics. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-8 Issue-3, February 2019.
Lekan, A. J. (2019). Student academic performance prediction using support vector machine. International Journal of Engineering Sciences & Research Technology, Vol.6.
Maulana, I., & Normalisa. (2019). Penerapan Algoritma Knuth-Morris-Pratt pada Fungsi Pencarian Dokumen untuk Sistem Informasi Administrasi Sekolah Berbasis Website. International Journal of Artificial Intelligence, 6(1).
Morsy, S., & Karypis, G. (2019). Sparse Neural Attentive Knowledge-based Models for Grade Prediction.
Mubarak, A. U. (2019). Student academic performance prediction using artificial neural networks: A case study. International Journal of Computer Applications. 10.5120/ijca2019919387
Panessai, I. Y., Lakulu, M. M., Abdul, M. H. R., Noor, N. A. Z. M., Salleh, N. S. M., & Bilong, A. A. (2019). PSAP: Improving Accuracy of Students’ Final Grade Prediction using ID3 and C4.5. International Journal of Artificial Intelligence, 6(2), 125–133. https://doi.org/10.36079/lamintang.ijai-0602.42
Ranjeeth, S., Latchoumi, T. P., & Paul, P. V. (2019). Optimal stochastic gradient descent with multilayer perceptron based student’s academic performance prediction model. Recent Advances in Computer Science and Communications, vol. 13.
Salal, Y., Abdoulaev, S., & Kumar, M. (2019). Educational Data Mining: Student performance prediction in academic. International Journal of Engineering and Advanced Technology, Volume 8, Issue 4C.
Sana, Siddiqui, I. F., & Arain, Q. A. (2019). Analyzing students’ academic performance through educational data mining. 3C Tecnología. Glosas de innovación aplicadas a la pyme. Special Issue, May 2019, pp. 12–43. doi: http://dx.doi.org/10.17993/3ctecno.2019.
Solanki, S., & Dhankhar, A. (2019). Predicting student’s performance by using classification methods. International Journal of Advanced Trends in Computer Science and Engineering, 1532–1536. https://doi.org/10.30534/ijatcse/2019/75842019
Thingbaijam & Lenin. (2019). Student’s performance prediction modelling using classification technique in R. doi:10.35940/ijrte.B3259.078219
Thong, D. M., Thanh, C., Minh, T., & Nam. (n.d.). An apache spark-based platform for predicting the performance of undergraduate student. Retrieved from https://www.researchgate. net/publication/335219629_The_Performance_of_Undergraduate_Student
Tiwari, A. K., Ramakrishna, G., Sharma, L. K., & Kashyap, S. K. (2019). Academic performance prediction algorithm based on fuzzy data mining. IAES International Journal of Artificial Intelligence (IJ-AI), 8(1), 26. https://doi.org/10.11591/ijai.v8.i1.pp26-32
Yaacob, W. F. W., Nasir, S. A. M., Yaacob, W. F. W., & Sobri, N. M. (2019). Supervised data mining approach for predicting student performance. Indonesian Journal of Electrical Engineering and Computer Science, 16(3), 1584. 10.11591/ijeecs.v16.i3.pp1584-1592
Yusuf, I., Iksan, N., Herman, N. S. (2011). The application of genetic algorithms in designing fuzzy logic controllers for plastic extruders. Lecture Notes in Electrical Engineering, pp. 25–37
Yusuf, I., Iksan, N., Herman, N. S. (2010). Weight-feeder control for plastic extruder using fuzzy genetic algorithms. 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 2010, 3, pp. 145–149.
Yan, X., & Abas, A. (2020). Preliminary on Human Driver Behavior: A Review. International Journal of Artificial Intelligence, 7(2), 29-34. https://doi.org/10.36079/lamintang.ijai-0702.146
Zhang, M., Zheng, J., Li, G. & Zhang, K. (2019). Performance prediction of a modular product variant with RS-SVM. Procedia CIRP, Vol. 79.
In-Text Citation: (Panessai et al., 2021)
To Cite this Article: Panessai, I. Y., Lakulu, M. M., Rahman, M. H. A., Noor, N. A. Z. M., Iksan, N., Rasli, R. M., Husin, M. R., Ahmad, H., Ariffin, S. A., Alias, A., Subramaniam, S. K., Majid, S., Bora, M. A., Bilong, A. A., & Mazli, N. M. (2021). Predicting Students’ Academic Performance: A Review for the Attribute Used. International Journal of Academic Research in Business and Social Sciences, 11(4), 595-603.
Copyright: © 2021 The Author(s)
Published by HRMARS (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode