ISSN: 2226-3624
Open access
To deposit amorphous carbon (a-C) thin films for carbon-based solar cell applications, a novel self-prepared Aerosol-Assisted Chemical Vapour Deposition (AACVD) system was created. At deposition temperatures of 600°C and 650°C, nitrogen doping was applied to a-C thin films. Using the solar simulator system in low-light conditions, the samples demonstrated the photoresponse characteristic for electrical measurements.The nanostructured sized a-C:N (100nm) is represented by FESEM pictures, and the EDX spectrum confirms the presence of N content in the N doped a-C. When the a-C:N was coated on a p-Si substrate, the solar cell efficiency was 0.001648% at 650°C and 0.000124% at 600°C. The presence of rectifying curves at the a-C:N/p-Si junction implies hetero-junction behaviour between the p-n structure and hence demonstrates successful N doping of a-C utilising the AACVD process.
Adhikari, S., Aryal, H. R., Ghimire, D. C., Kalita, G., & Umeno, M. (2008). Optical band gap of nitrogenated amorphous carbon thin films synthesized by microwave surface wave plasma CVD. Diamond and Related Materials, 17(7–10), 1666–1668. https://doi.org/10.1016/J.DIAMOND.2008.03.027
Adhikari, S., Ghimire, D. C., Aryal, H. R., Adhikary, S., Uchida, H., & Umeno, M. (2006). Boron-doped hydrogenated amorphous carbon films grown by surface-wave mode microwave plasma chemical vapor deposition. Diamond and Related Materials, 15(11–12), 1909–1912. https://doi.org/10.1016/J.DIAMOND.2006.07.022
Belaidi, A., Bayon, R., Dloczik, L., Ernst, K., Lux-Steiner, M. C., & Konenkamp, R. (2003). Comparison of different thin film absorbers used in eta-solar cells. Thin Solid Films, 431–432, 488–491. https://doi.org/10.1016/S0040-6090(03)00223-2
Hauser, J. J. (1977). Electrical, structural and optical properties of amorphous carbon. Journal of Non-Crystalline Solids, 23(1), 21–41. https://doi.org/10.1016/0022-3093(77)90035-7
Hou, X., & Choy, K. L. (2006). Processing and Applications of Aerosol-Assisted Chemical Vapor Deposition. Chemical Vapor Deposition, 12(10), 583–596. https://doi.org/10.1002/CVDE.200600033
Huang, L. Y., & Meng, L. (2007). Effects of film thickness on microstructure and electrical properties of the pyrite films. Materials Science and Engineering: B, 137(1–3), 310–314. https://doi.org/10.1016/J.MSEB.2006.11.029
Liu, A., Wu, H., Zhu, J., Han, J., & Niu, L. (2008). Evolution of compressive stress and electrical conductivity of tetrahedral amorphous carbon films with phosphorus incorporation. Diamond and Related Materials, 17(11), 1927–1932. https://doi.org/10.1016/J.DIAMOND.2008.04.008
Liu, S., Wang, G., & Wang, Z. (2007). Study of the conductivity of nitrogen doped tetrahedral amorphous carbon films. Journal of Non-Crystalline Solids, 353(29), 2796–2798. https://doi.org/10.1016/J.JNONCRYSOL.2007.05.021
Nolan, M. G., Hamilton, J. A., Obrien, S., Bruno, G., Pereira, L., Fortunato, E., Martins, R., Povey, I. M., & Pemble, M. E. (2011). The characterisation of aerosol assisted CVD conducting, photocatalytic indium doped zinc oxide films. Journal of Photochemistry and Photobiology A: Chemistry, 219(1), 10–15. https://doi.org/10.1016/J.JPHOTOCHEM.2011.01.010
Omer, A. M. M., Rusop, M., Adhikari, S., Adhikary, S., Uchida, H., & Umeno, M. (2005). Photovoltaic characteristics of nitrogen-doped amorphous carbon thin-films grown on quartz and flexible plastic substrates by microwave surface wave plasma CVD. Diamond and Related Materials, 14(3–7), 1084–1088. https://doi.org/10.1016/J.DIAMOND.2004.12.010
Robertson, J. (2002a). Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports, 37(4–6), 129–281. https://doi.org/10.1016/S0927-796X(02)00005-0
Robertson, J. (2002b). Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports, 37(4–6), 129–281. https://doi.org/10.1016/S0927-796X(02)00005-0
Robertson, J., & Davis, C. A. (1995). Nitrogen doping of tetrahedral amorphous carbon. Diamond and Related Materials, 4(4), 441–444. https://doi.org/10.1016/0925-9635(94)05265-4
Rusop, M., Adhikari, S., Omer, A. M. M., Soga, T., Jimbo, T., & Umeno, M. (2006). Effects of methane gas flow rate on the optoelectrical properties of nitrogenated carbon thin films grown by surface wave microwave plasma chemical vapor deposition. Diamond and Related Materials, 15(2–3), 371–377. https://doi.org/10.1016/J.DIAMOND.2005.07.034
Singh, R. S., Rangari, V. K., Sanagapalli, S., Jayaraman, V., Mahendra, S., & Singh, V. P. (2004). Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications. Solar Energy Materials and Solar Cells, 82(1–2), 315–330. https://doi.org/10.1016/J.SOLMAT.2004.02.006
Sitch, P. K., Jungnickel, G., Köhler, T., Frauenheim, T., & Porezag, D. (1998). p- and n-Type doping in carbon modifications. Journal of Non-Crystalline Solids, 227–230(PART 1), 607–611. https://doi.org/10.1016/S0022-3093(98)00232-4
Suemasu, T., Saito, T., Toh, K., Okada, A., & Khan, M. A. (2011). Photoresponse properties of BaSi2 epitaxial films grown on the tunnel junction for high-efficiency thin-film solar cells. Thin Solid Films, 519(24), 8501–8504. https://doi.org/10.1016/J.TSF.2011.05.028
Valentini, L., Kenny, J. M., Gerbig, Y., Savan, A., Haefke, H., Lozzi, L., & Santucci, S. (2001). Structure and mechanical properties of argon assisted carbon nitride films. Thin Solid Films, 398–399(399), 124–129. https://doi.org/10.1016/S0040-6090(01)01458-4
Yap, S. S., Yow, H. K., & Tou, T. Y. (2009). Amorphous carbon–silicon heterojunctions by pulsed Nd:YAG laser deposition. Thin Solid Films, 517(18), 5569–5572. https://doi.org/10.1016/J.TSF.2009.02.144
Zeng, A., Yin, Y., Bilek, M., & McKenzie, D. (2005). Ohmic contact to nitrogen doped amorphous carbon films. Surface and Coatings Technology, 198(1–3), 202–205. https://doi.org/10.1016/J.SURFCOAT.2004.10.038
In-Text Citation: (Ahmad et al., 2023)
To Cite this Article: Ahmad, N., Zulkefle, H., Saad, P. S. M., S, S. S., Borhan, N., & Mohtar, W. A. A. I. W. (2023). Low-Cost Aacvd As The Proven Method to Fabricate Carbon Solar Cell. International Journal of Academic Research in Economics and Management and Sciences, 12(2), 663 – 673.
Copyright: © 2023 The Author(s)
Published by HRMARS (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode