Journal Screenshot

International Journal of Academic Research in Economics and Management Sciences

Open Access Journal

ISSN: 2226-3624

Understanding the Mechanisms of Mobile Health Apps Acceptance Among Silver Generation in China: A Mediation and Moderation Analysis

Qing Xie, Anuar Shah Bali Mahomed, Rosmah Mohamed, Anusuiya a/p Subramaniam

http://dx.doi.org/10.6007/IJAREMS/v13-i2/21674

Open access

The rapid expansion of mobile technology has led to the integration of AI-enhanced chatbots as virtual assistants within mHealth apps, providing continuous support for users. However, variations in mHealth app design features influence user perceptions and acceptance intentions. This study aims to examine the mediation and moderation effects impacting the acceptance of mHealth apps among the silver generation (aged 55 and above) mobile users in China. The SOR Model explains the mediating role of initial trust, while VUT investigates the moderating roles of perceived anthropomorphism and perceived intelligence. Data was collected from 641 Chinese silver generation users with mobile phone experience in the past six months. The results indicated that initial trust mediates the influence of companion presence on mHealth app acceptance intention. Perceived anthropomorphism moderates the relationship between companion presence and mHealth acceptance intention. Perceived anthropomorphism also moderates the relationship between initial trust and mHealth acceptance intention. This study provides new insights into the mechanisms of mHealth app acceptance and offers substantial contributions for practitioners to improve app features.

Alboqami, H. (2023). Factors Affecting Consumers Adoption of AI-Based Chatbots: The Role of Anthropomorphism. American Journal of Industrial and Business Management, 13(04), 195-214. https://doi.org/10.4236/ajibm.2023.134014
Alimardani, M., & Qurashi, S. (2020). Mind perception of a sociable humanoid robot: a comparison between elderly and young adults. Advances in Intelligent Systems and Computing, 96-108. https://doi.org/10.1007/978-3-030-36150-1_9
Aoki, N. (2020). An experimental study of public trust in AI chatbots in the public sector. Government Information Quarterly, 37(4), 101490.
Appel, M., Izydorczyk, D., Weber, S., Mara, M., & Lischetzke, T. (2020). The uncanny of mind in a machine: Humanoid robots as tools, agents, and experiencers. Computers in Human Behavior, 102, 274-286.
Balakrishnan, J., & Dwivedi, Y. K. (2021). Conversational commerce: entering the next stage of AI-powered digital assistants. Annals of Operations Research, 1-35.
Becker, M., Matt, C., Widjaja, T., & Hess, T. (2017). Understanding privacy risk perceptions of consumer health wearables–an empirical taxonomy.
Belanche, D., Casaló, L. V., Flavián, C., & Schepers, J. (2020). Service robot implementation: a theoretical framework and research agenda. The Service Industries Journal, 40(3-4), 203-225.
Belanche, D., Casaló, L. V., Schepers, J., & Flavián, C. (2021). Examining the effects of robots' physical appearance, warmth, and competence in frontline services: The Humanness?Value?Loyalty model. Psychology & Marketing, 38(12), 2357-2376.
Bott, N., Wexler, S., Drury, L., Pollak, C., Wang, V., Scher, K., & Narducci, S. (2019). A protocol-driven, bedside digital conversational agent to support nurse teams and mitigate risks of hospitalization in older adults: case control pre-post study. Journal of medical Internet research, 21(10), e13440.
Brewer, R., Pierce, C., Upadhyay, P., & Park, L. (2022). An empirical study of older adult’s voice assistant use for health information seeking. ACM Transactions on Interactive Intelligent Systems (TiiS), 12(2), 1-32. https://doi.org/10.1145/3484507
Cao, Y., Zhang, J., Ma, L., Qin, X., & Li, J. (2020). Examining user’s initial trust building in Mobile online health community adopting. International journal of environmental research and public health, 17(11), 3945. https://doi.org/10.3390/ijerph17113945
Chakraborty, D., Siddiqui, A., Siddiqui, M., Rana, N. P., & Dash, G. (2022). Mobile payment apps filling value gaps: Integrating consumption values with initial trust and customer involvement. Journal of Retailing and Consumer Services, 66, 102946. https://doi.org/10.1016/j.jretconser.2022.102946
Chakraborty, D., Siddiqui, M., & Siddiqui, A. (2022). Can initial trust boost intention to purchase Ayurveda products? A theory of consumption value (TCV) perspective. International Journal of Consumer Studies, 46(6), 2521-2541. https://doi.org/10.1111/ijcs.12805
Chen, Y.-H., & Barnes, S. (2007). Initial trust and online buyer behaviour. Industrial Management & Data Systems, 107(1), 21-36. https://doi.org/10.1108/02635570710719034
Chiu, J. L., Bool, N. C., & Chiu, C. L. (2017). Challenges and factors influencing initial trust and behavioral intention to use mobile banking services in the Philippines. Asia Pacific Journal of Innovation and Entrepreneurship, 11(2), 246-278. https://doi.org/10.1108/apjie-08-2017-029
Dang, J., & Liu, L. (2023). Do lonely people seek robot companionship? A comparative examination of the Loneliness–Robot anthropomorphism link in the United States and China. Computers in Human Behavior, 141, 107637. https://doi.org/10.1016/j.chb.2022.107637
Deng, Z., Hong, Z., Ren, C., Zhang, W., & Xiang, F. (2018). What predicts patients’ adoption intention toward mHealth services in China: empirical study. JMIR mHealth and uHealth, 6(8), e172. https://doi.org/10.2196/mhealth.9316
Duy, N. T., Mondal, S. R., Van, N. T. T., Dzung, P. T., Minh, D. X. H., & Das, S. (2020). A Study on the Role of Web 4.0 and 5.0 in the Sustainable Tourism Ecosystem of Ho Chi Minh City, Vietnam. Sustainability, 12(17), 7140.
Dwivedi, Y. K., Shareef, M. A., Simintiras, A. C., Lal, B., & Weerakkody, V. (2016). Adoption behaviour for mobile health (m-Health) service: a cross-country comparison. Government Information Quarterly, 33(1), 174-187.
Gillath, O., Ai, T., Branicky, M. S., Keshmiri, S., Davison, R. B., & Spaulding, R. (2021). Attachment and trust in artificial intelligence. Computers in Human Behavior, 115, 106607. https://doi.org/10.1016/j.chb.2020.106607
Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2), 627-660. https://doi.org/10.5465/annals.2018.0057
Han, M. C. (2021). The impact of anthropomorphism on consumers’ purchase decision in chatbot commerce. Journal of Internet Commerce, 20(1), 46-65. https://doi.org/10.1080/15332861.2020.1863022
Harrington, L. (2018). From apps to mHealth: informing, interacting, and changing behavior. AACN advanced critical care, 29(3), 240-243. https://doi.org/10.4037/aacnacc2018240
Hsu, C.-L., Chang, K.-C., & Chen, M.-C. (2012). The impact of website quality on customer satisfaction and purchase intention: perceived playfulness and perceived flow as mediators. Information Systems and e-Business Management, 10(4), 549-570. https://doi.org/10.1007/s10257-011-0181-5
Jentsch, E. (1906). Zur psychologie des unheimlichen.
Kim, B., de Visser, E., & Phillips, E. (2022). Two uncanny valleys: Re-evaluating the uncanny valley across the full spectrum of real-world human-like robots. Computers in Human Behavior, 135, 107340. https://doi.org/10.1016/j.chb.2022.107340
Kim, E., & Tadisina, S. (2003). Customers' initial trust in e-businesses: How to measure customers' initial trust.
Kim, L. H., Domova, V., Yao, Y., Huang, C.-M., Follmer, S., & Paredes, P. E. (2022). Robotic Presence: The Effects of Anthropomorphism and Robot State on Task Performance and Emotion. IEEE Robotics and Automation Letters, 7(3), 7399-7406.
https://doi.org/10.1109/lra.2022.3181726
Kimiagari, S., & Baei, F. (2022). Promoting e-banking actual usage: mix of technology acceptance model and technology-organisation-environment framework. Enterprise Information Systems , 16(8-9). https://doi.org/10.1080/17517575.2021.1894356
Li, J., Ma, Q., Chan, A. H., & Man, S. S. (2019). Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Applied ergonomics, 75, 162-169. https://doi.org/10.1016/j.apergo.2018.10.006
Li, M., & Suh, A. (2022). Anthropomorphism in AI-enabled technology: A literature review. Electronic Markets, 32(4), 2245-2275. https://doi.org/10.1007/s12525-022-00591-7
Li, Y., Song, Y., Zhao, W., Guo, X., Ju, X., & Vogel, D. (2019). Exploring the Role of Online Health Community Information in Patients’ Decisions to Switch from Online to Offline Medical Services. International Journal of Medical Informatics, 130, 103951. https://doi.org/10.1016/j.ijmedinf.2019.08.011
Lim, X.-J., Cheah, J.-H., Ng, S. I., Basha, N. K., & Soutar, G. (2021). The effects of anthropomorphism presence and the marketing mix have on retail app continuance use intention. Technological Forecasting and Social Change, 168, 120763. https://doi.org/10.1016/j.techfore.2021.120763
Liu, K., & Tao, D. (2022). The roles of trust, personalization, loss of privacy, and anthropomorphism in public acceptance of smart healthcare services. Computers in Human Behavior, 127, 107026. https://doi.org/10.1016/j.chb.2021.107026
MacDorman, K. F., & Ishiguro, H. (2006). The uncanny advantage of using androids in cognitive and social science research. Interaction Studies, 7(3), 297-337.
https://doi.org/10.1075/is.7.3.03mac
Maehigashi, A. (2022). The Nature of Trust in Communication Robots: Through Comparison with Trusts in Other People and AI systems. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
https://doi.org/10.1109/hri53351.2022.9889521
Masahiro, M. (1970). The uncanny valley. Energy, 7, 33.
McAndrew, F. T., & Koehnke, S. S. (2016). On the nature of creepiness. New ideas in psychology, 43, 10-15. https://doi.org/10.1016/j.newideapsych.2016.03.003
McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information systems research, 13(3), 334-359. https://doi.org/10.1287/isre.13.3.334.81
Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. the MIT Press.
Mende, M., Scott, M. L., van Doorn, J., Grewal, D., & Shanks, I. (2019). Service robots rising: How humanoid robots influence service experiences and elicit compensatory consumer responses. Journal of Marketing Research, 56(4), 535-556.
https://doi.org/10.1177/0022243718822827
Meng, F., Guo, X., Peng, Z., Lai, K. H., & Zhao, X. (2019). Investigating the adoption of mobile health services by elderly users: Trust transfer model and survey study. JMIR mHealth and uHealth, 7(1), e12269. https://doi.org/10.2196/12269
Metallo, C., Agrifoglio, R., Lepore, L., & Landriani, L. (2022). Explaing users’ technology acceptance through national cultural values in the hospital context. BMC health services research, 22(1). https://doi.org/10.1186/s12913-022-07488-3
Molins-Ruano, P., Rodriguez, P., Atrio, S., & Sacha, G. M. (2016). Modelling experts' behavior with e-valUAM to measure computer science skills. Computers in Human Behavior, 61, 378-385. https://doi.org/10.1016/j.chb.2016.03.044
Mori, M. (1970). Bukimi no tani [the uncanny valley]. Energy, 7, 33-35.
Mori, M., MacDorman, K., & Kageki, N. (2012). The Uncanny Valley [From the Field]. IEEE Robotics & automation magazine, 19(2), 98-100. https://doi.org/10.1109/mra.2012.2192811
Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2020). How perceptions of intelligence and anthropomorphism affect adoption of personal intelligent agents. Electronic Markets. https://doi.org/10.1007/s12525-020-00411-w
Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2023). The role of user perceptions of intelligence, anthropomorphism, and self-extension on continuance of use of personal intelligent agents. European Journal of Information Systems, 32(3), 601-622. https://doi.org/10.1080/0960085x.2021.2018365
Osakwe, C. N., Okeke, T. C., & Kwarteng, M. A. (2022). Trust building in mobile money and its outcomes. European Business Review, 34(2), 244-262. https://doi.org/10.1108/ebr-09-2020-0221
Ou, C. X., Pavlou, P. A., & Davison, R. M. (2014). Swift guanxi in online marketplaces: The role of computer-mediated communication technologies. MIS quarterly, 38(1), 209-230. https://doi.org/10.25300/misq/2014/38.1.10
Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International journal of electronic commerce, 7(3), 101-134. https://doi.org/10.1080/10864415.2003.11044275
Pillai, R., Ghanghorkar, Y., Sivathanu, B., Algharabat, R., & Rana, N. P. (2024). Adoption of artificial intelligence (AI) based employee experience (EEX) chatbots. Information Technology & People, 37(1), 449-478. https://doi.org/10.1108/itp-04-2022-0287
Shankar, A., & Jebarajakirthy, C. (2019). The influence of e-banking service quality on customer loyalty: A moderated mediation approach. International Journal of Bank Marketing, 37(5), 1119-1142. https://doi.org/10.1108/ijbm-03-2018-0063
Shao, Z., Zhang, L., Brown, S. A., & Zhao, T. (2022). Understanding users' trust transfer mechanism in a blockchain-enabled platform: A mixed methods study. Decision Support Systems, 155, 113716. https://doi.org/10.1016/j.dss.2021.113716
Shareef, M. (2013). Online Buying Behavior and Perceived Trustworthiness. British Journal of Applied Science & Technology, 3(4), 662-683. https://doi.org/10.9734/bjast/2013/2394
Shareef, M. A., Kumar, V., Dwivedi, Y. K., Kumar, U., Akram, M. S., & Raman, R. (2021). A new health care system enabled by machine intelligence: Elderly people's trust or losing self control. Technological Forecasting and Social Change, 162, 120334. https://doi.org/10.1016/j.techfore.2020.120334
Sheehan, B., Jin, H. S., & Gottlieb, U. (2020). Customer service chatbots: Anthropomorphism and adoption. Journal of Business Research, 115, 14-24. https://doi.org/10.1016/j.jbusres.2020.04.030
Sigmund, F., & David, M. (1919). The Uncanny. The Standard Edition of the Complete Psychological Works of Sigmund Freud, 219-252.
Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. Telematics and Informatics, 47, 101324. https://doi.org/10.1016/j.tele.2019.101324
Statista. (2023). Share of mHealth apps incorporating advanced and standard AI worldwide 2020. Statista. https://www.statista.com/statistics/1180814/mhealth-apps-share-incorporating-ai/
Talwar, S., Dhir, A., Khalil, A., Mohan, G., & Islam, A. N. (2020). Point of adoption and beyond. Initial trust and mobile-payment continuation intention. Journal of Retailing and Consumer Services, 55, 102086.
Tang, Y., Jiang, S., & Lee, J. C. (2022). Continuous Usage Intention of Artificial Intelligence (AI)-Enabled Mobile Banking: A Preliminary Study. Proceedings of the 2022 2nd International Conference on Economic Development and Business Culture (ICEDBC 2022), 135-139. https://doi.org/10.2991/978-94-6463-036-7_20
Uysal, E., Alavi, S., & Bezençon, V. (2022). Trojan horse or useful helper? A relationship perspective on artificial intelligence assistants with humanlike features. Journal of the Academy of Marketing Science, 1-23.
Van Doorn, J., Mende, M., Noble, S. M., Hulland, J., Ostrom, A. L., Grewal, D., & Petersen, J. A. (2017). Domo arigato Mr. Roboto: Emergence of automated social presence in organizational frontlines and customers’ service experiences. Journal of service research, 20(1), 43-58.
Van Pinxteren, M. M., Wetzels, R. W., Rüger, J., Pluymaekers, M., & Wetzels, M. (2019). Trust in humanoid robots: implications for services marketing. Journal of Services Marketing.
Walters, M. L., Syrdal, D. S., Dautenhahn, K., Te Boekhorst, R., & Koay, K. L. (2008). Avoiding the uncanny valley: robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion. Autonomous Robots, 24(2), 159-178.
Wei, H., & Long, L. (2008). Interpersonal initial trust within organizations. Advances in Psychological Science, 16(02), 328.
White, D., & Katsuno, H. (2021). TOWARD AN AFFECTIVE SENSE OF LIFE: Artificial Intelligence, Animacy, and Amusement at a Robot Pet Memorial Service in Japan. Cultural Anthropology, 36(2), 222-251.
Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after a 100-ms exposure to a face. Psychological science, 17(7), 592-598.
Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: service robots in the frontline. Journal of Service Management, 29(5), 907-931.
Yu, C. E. (2020). Humanlike robots as employees in the hotel industry: Thematic content analysis of online reviews. Journal of Hospitality Marketing & Management, 29(1), 22-38.
Zhao, Y., Ni, Q., & Zhou, R. (2018). What factors influence the mobile health service adoption? A meta-analysis and the moderating role of age. International Journal of Information Management, 43, 342-350.

(Xie et al., 2024)
Xie, Q., Mahomed, A. S. B., Mohamed, R., & Subramaniam, A. a/p. (2024). Understanding the Mechanisms of Mobile Health Apps Acceptance Among Silver Generation in China: A Mediation and Moderation Analysis. International Journal of Academic Research in Economics and Management and Sciences, 13(2), 291–308.