ISSN: 2226-3624
Open access
Dye-sensitized solar cells are considered a highly promising alternative method for generating electrical power. The DSSC is a photoelectrochemical device designed to efficiently convert solar energy into electrical energy. Titanium dioxide (TiO2) is the most suitable semiconductor oxide for use in DSSC due to its low-cost materials, easy manufacturing, lack of toxicity, and biocompatibility. Titanium dioxide, or TiO2, is a highly promising substance utilised in the application of dye-sensitized solar cells as semi conducting layers. The preparation of TiO2 nanoparticles obtained from using sol-gel method. This paper is to study the effect of the thickness of the semi conducting layer on the performance of the DSSC application. The electrical properties show that the current for 1 layer is the highest among others different thickness. It happens because shorter diffusion routes in thinner TiO2 layers can help electrons move quicker through the semiconductor material and thinner TiO2 layers lower the distance required for photogenerated electrons to get to the conductive substrate. From the result of UV-Vis, the absorption coefficient rises when the transmittance falls, and more light is absorbed as a result. A higher absorption coefficient is connected with more light absorption. The bandgap, as determined by the Tauc plot, determines the material's capacity to absorb light at specific energy levels, which contributes to its usefulness in DSSC applications. The XRD pattern shows that the TiO2 5 layer has the highest crystallinity and TiO2 paste from 2 layer until 5 layer is anatase phase.
Agarwal, R., Vyas, Y., Chundawat, P., Dharmendra, & Ameta, C. (2021). Outdoor Performance and Stability Assessment of Dye-Sensitized Solar Cells (DSSCs). In M. Aghaei (Ed.), Solar Radiation (p. Ch. 7). IntechOpen. https://doi.org/10.5772/intechopen.98621
Ali, F. H., & Alwan, D. B. (2018). Effect of particle size of TiO 2 and additive materials to improve dye sensitized solar cells efficiency. 12077. https://doi.org/10.1088/1742-6596/1003/1/012077
Cabezuelo, O., Diego-Lopez, A., Atienzar, P., Luisa, M. M., & Bosca, F. (2023). Optimizing the use of light in supported TiO2 photocatalysts: Relevance of the shell thickness. Journal of Photochemistry and Photobiology A: Chemistry, 444, 114917. https://doi.org/10.1016/J.JPHOTOCHEM.2023.114917
Cai, J., & Qi, L. (2015). Recent advances in antireflective surfaces based on nanostructure arrays. Materials Horizons, 2(1), 37–53. https://doi.org/10.1039/C4MH00140K
Ekar, S. U., Shekhar, G., Khollam, Y. B., Wani, P. N., Jadkar, S. R., Naushad, M., Chaskar, M. G., Jadhav, S. S., Fadel, A., Jadhav, V. V., Shendkar, J. H., & Mane, R. S. (2017). Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods. Journal of Solid-State Electrochemistry, 21(9), 2713–2718. https://doi.org/10.1007/S10008-016-3376-3/METRICS
Elsaeedy, H. I., Qasem, A., Yakout, H. A., & Mahmoud, M. (2021). The pivotal role of TiO2 layer thickness in optimizing the performance of TiO2/P-Si solar cell. Journal of Alloys and Compounds, 867, 159150. https://doi.org/10.1016/J.JALLCOM.2021.159150
Elshimy, H., Abdallah, T., & Shama, A. A. (2020). Optimization of Spin Coated TiO2 Layer for Hole-Free Perovskite Solar Cell. IOP Conference Series: Materials Science and Engineering, 762(1), 012003. https://doi.org/10.1088/1757-899X/762/1/012003
Jeng, M. J., Wung, Y. L., Chang, L. B., & Chow, L. (2013). Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013(1), 563897. https://doi.org/10.1155/2013/563897
Kazim, O. S., & Nwauzor, J. N. (2020). Analysis of Fabrication, Characterization and Performance of Dye-sensitized Solar Cell Using Natural Dye1. International Journal of Advancement in Development Studies. https://www.researchgate.net/publication/364330633_Analysis_of_Fabrication_Characterization_and_Performance_of_Dye-sensitized_Solar_Cell_Using_Natural_Dye1
Lallo, A. I. M. J., Prima, E. C., Suhendi, E., & Yuliarto, B. (2022). Effect of TiO2 thin film thickness and dye characterization using Binahong leaf (Anredera cordifolia) as photosensitizer in dye-sensitized solar cell. Journal of Aceh Physics Society, 11(4), 109–114. https://doi.org/10.24815/JACPS.V11I4.28302
N. T. Mary, R., Joshua. A., Vincent, J. K. L., A. Suresh, A. S., & Saritha, R. (2014). Natural Sensitizers for Dye Sensitized Solar Cell Applications. International Journal of Scientific & Engineering Research, Volume 5, Issue 3. https://www.researchgate.net/publication/264045910_Natural_Sensitizers_for_Dye_Sensitized_Solar_Cell_Applications
Nadzirah, S., & Hashim, U. (2013). Annealing effects on titanium dioxide films by Sol-Gel spin coating method. Proceedings - RSM 2013: 2013 IEEE Regional Symposium on Micro and Nano Electronics, 159–162. https://doi.org/10.1109/RSM.2013.6706497
Swathi, K. E., Jinchu, I., Sreelatha, K. S., Sreekala, C. O., & Menon, S. K. (2018). Effect of microwave exposure on the photo anode of DSSC sensitized with natural dye. IOP Conference Series: Materials Science and Engineering, 310(1). https://doi.org/10.1088/1757-899X/310/1/012141
Tanihaha, S. L., Uranus, H. P., & Darma, J. (2010). Fabrication and characterization of dye-sensitized solar cell using blackberry dye and titanium dioxide nanocrystals. Proceedings - 2010 2nd International Conference on Advances in Computing, Control and Telecommunication Technologies, ACT 2010, 60–63. https://doi.org/10.1109/ACT.2010.46
Theivasanthi, T., & Alagar, M. (2013). Titanium dioxide (TiO2) Nanoparticles XRD Analyses: An Insight. http://arxiv.org/abs/1307.1091
Wu, S., Luo, X., Long, Y., & Xu, B. (2019). Exploring the Phase Transformation Mechanism of Titanium Dioxide by High Temperature in Situ Method. IOP Conference Series: Materials Science and Engineering, 493(1), 012010. https://doi.org/10.1088/1757-899X/493/1/012010
Zainol, M. N. Bin, & Mamat, M. H. (2017). Content variation of particle size in TiO2 paste as medium for electron transportation in dye sensitized solar cell. Proceedings - 14th IEEE Student Conference on Research and Development: Advancing Technology for Humanity, SCOReD 2016. https://doi.org/10.1109/SCORED.2016.7810081
Agarwal, R., Vyas, Y., Chundawat, P., Dharmendra, & Ameta, C. (2021). Outdoor Performance and Stability Assessment of Dye-Sensitized Solar Cells (DSSCs). In M. Aghaei (Ed.), Solar Radiation (p. Ch. 7). IntechOpen. https://doi.org/10.5772/intechopen.98621
Ali, F. H., & Alwan, D. B. (2018). Effect of particle size of TiO 2 and additive materials to improve dye sensitized solar cells efficiency. 12077. https://doi.org/10.1088/1742-6596/1003/1/012077
Cabezuelo, O., Diego-Lopez, A., Atienzar, P., Luisa, M. M., & Bosca, F. (2023). Optimizing the use of light in supported TiO2 photocatalysts: Relevance of the shell thickness. Journal of Photochemistry and Photobiology A: Chemistry, 444, 114917. https://doi.org/10.1016/J.JPHOTOCHEM.2023.114917
Cai, J., & Qi, L. (2015). Recent advances in antireflective surfaces based on nanostructure arrays. Materials Horizons, 2(1), 37–53. https://doi.org/10.1039/C4MH00140K
Ekar, S. U., Shekhar, G., Khollam, Y. B., Wani, P. N., Jadkar, S. R., Naushad, M., Chaskar, M. G., Jadhav, S. S., Fadel, A., Jadhav, V. V., Shendkar, J. H., & Mane, R. S. (2017). Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods. Journal of Solid-State Electrochemistry, 21(9), 2713–2718. https://doi.org/10.1007/S10008-016-3376-3/METRICS
Elsaeedy, H. I., Qasem, A., Yakout, H. A., & Mahmoud, M. (2021). The pivotal role of TiO2 layer thickness in optimizing the performance of TiO2/P-Si solar cell. Journal of Alloys and Compounds, 867, 159150. https://doi.org/10.1016/J.JALLCOM.2021.159150
Elshimy, H., Abdallah, T., & Shama, A. A. (2020). Optimization of Spin Coated TiO2 Layer for Hole-Free Perovskite Solar Cell. IOP Conference Series: Materials Science and Engineering, 762(1), 012003. https://doi.org/10.1088/1757-899X/762/1/012003
Jeng, M. J., Wung, Y. L., Chang, L. B., & Chow, L. (2013). Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013(1), 563897. https://doi.org/10.1155/2013/563897
Kazim, O. S., & Nwauzor, J. N. (2020). Analysis of Fabrication, Characterization and Performance of Dye-sensitized Solar Cell Using Natural Dye1. International Journal of Advancement in Development Studies. https://www.researchgate.net/publication/364330633_Analysis_of_Fabrication_Characterization_and_Performance_of_Dye-sensitized_Solar_Cell_Using_Natural_Dye1
Lallo, A. I. M. J., Prima, E. C., Suhendi, E., & Yuliarto, B. (2022). Effect of TiO2 thin film thickness and dye characterization using Binahong leaf (Anredera cordifolia) as photosensitizer in dye-sensitized solar cell. Journal of Aceh Physics Society, 11(4), 109–114. https://doi.org/10.24815/JACPS.V11I4.28302
N. T. Mary, R., Joshua. A., Vincent, J. K. L., A. Suresh, A. S., & Saritha, R. (2014). Natural Sensitizers for Dye Sensitized Solar Cell Applications. International Journal of Scientific & Engineering Research, Volume 5, Issue 3. https://www.researchgate.net/publication/264045910_Natural_Sensitizers_for_Dye_Sensitized_Solar_Cell_Applications
Nadzirah, S., & Hashim, U. (2013). Annealing effects on titanium dioxide films by Sol-Gel spin coating method. Proceedings - RSM 2013: 2013 IEEE Regional Symposium on Micro and Nano Electronics, 159–162. https://doi.org/10.1109/RSM.2013.6706497
Swathi, K. E., Jinchu, I., Sreelatha, K. S., Sreekala, C. O., & Menon, S. K. (2018). Effect of microwave exposure on the photo anode of DSSC sensitized with natural dye. IOP Conference Series: Materials Science and Engineering, 310(1). https://doi.org/10.1088/1757-899X/310/1/012141
Tanihaha, S. L., Uranus, H. P., & Darma, J. (2010). Fabrication and characterization of dye-sensitized solar cell using blackberry dye and titanium dioxide nanocrystals. Proceedings - 2010 2nd International Conference on Advances in Computing, Control and Telecommunication Technologies, ACT 2010, 60–63. https://doi.org/10.1109/ACT.2010.46
Theivasanthi, T., & Alagar, M. (2013). Titanium dioxide (TiO2) Nanoparticles XRD Analyses: An Insight. http://arxiv.org/abs/1307.1091
Wu, S., Luo, X., Long, Y., & Xu, B. (2019). Exploring the Phase Transformation Mechanism of Titanium Dioxide by High Temperature in Situ Method. IOP Conference Series: Materials Science and Engineering, 493(1), 012010. https://doi.org/10.1088/1757-899X/493/1/012010
Zainol, M. N. Bin, & Mamat, M. H. (2017). Content variation of particle size in TiO2 paste as medium for electron transportation in dye sensitized solar cell. Proceedings - 14th IEEE Student Conference on Research and Development: Advancing Technology for Humanity, SCOReD 2016. https://doi.org/10.1109/SCORED.2016.7810081
Agarwal, R., Vyas, Y., Chundawat, P., Dharmendra, & Ameta, C. (2021). Outdoor Performance and Stability Assessment of Dye-Sensitized Solar Cells (DSSCs). In M. Aghaei (Ed.), Solar Radiation (p. Ch. 7). IntechOpen. https://doi.org/10.5772/intechopen.98621
Ali, F. H., & Alwan, D. B. (2018). Effect of particle size of TiO 2 and additive materials to improve dye sensitized solar cells efficiency. 12077. https://doi.org/10.1088/1742-6596/1003/1/012077
Cabezuelo, O., Diego-Lopez, A., Atienzar, P., Luisa, M. M., & Bosca, F. (2023). Optimizing the use of light in supported TiO2 photocatalysts: Relevance of the shell thickness. Journal of Photochemistry and Photobiology A: Chemistry, 444, 114917. https://doi.org/10.1016/J.JPHOTOCHEM.2023.114917
Cai, J., & Qi, L. (2015). Recent advances in antireflective surfaces based on nanostructure arrays. Materials Horizons, 2(1), 37–53. https://doi.org/10.1039/C4MH00140K
Ekar, S. U., Shekhar, G., Khollam, Y. B., Wani, P. N., Jadkar, S. R., Naushad, M., Chaskar, M. G., Jadhav, S. S., Fadel, A., Jadhav, V. V., Shendkar, J. H., & Mane, R. S. (2017). Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods. Journal of Solid-State Electrochemistry, 21(9), 2713–2718. https://doi.org/10.1007/S10008-016-3376-3/METRICS
Elsaeedy, H. I., Qasem, A., Yakout, H. A., & Mahmoud, M. (2021). The pivotal role of TiO2 layer thickness in optimizing the performance of TiO2/P-Si solar cell. Journal of Alloys and Compounds, 867, 159150. https://doi.org/10.1016/J.JALLCOM.2021.159150
Elshimy, H., Abdallah, T., & Shama, A. A. (2020). Optimization of Spin Coated TiO2 Layer for Hole-Free Perovskite Solar Cell. IOP Conference Series: Materials Science and Engineering, 762(1), 012003. https://doi.org/10.1088/1757-899X/762/1/012003
Jeng, M. J., Wung, Y. L., Chang, L. B., & Chow, L. (2013). Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013(1), 563897. https://doi.org/10.1155/2013/563897
Kazim, O. S., & Nwauzor, J. N. (2020). Analysis of Fabrication, Characterization and Performance of Dye-sensitized Solar Cell Using Natural Dye1. International Journal of Advancement in Development Studies. https://www.researchgate.net/publication/364330633_Analysis_of_Fabrication_Characterization_and_Performance_of_Dye-sensitized_Solar_Cell_Using_Natural_Dye1
Lallo, A. I. M. J., Prima, E. C., Suhendi, E., & Yuliarto, B. (2022). Effect of TiO2 thin film thickness and dye characterization using Binahong leaf (Anredera cordifolia) as photosensitizer in dye-sensitized solar cell. Journal of Aceh Physics Society, 11(4), 109–114. https://doi.org/10.24815/JACPS.V11I4.28302
N. T. Mary, R., Joshua. A., Vincent, J. K. L., A. Suresh, A. S., & Saritha, R. (2014). Natural Sensitizers for Dye Sensitized Solar Cell Applications. International Journal of Scientific & Engineering Research, Volume 5, Issue 3. https://www.researchgate.net/publication/264045910_Natural_Sensitizers_for_Dye_Sensitized_Solar_Cell_Applications
Nadzirah, S., & Hashim, U. (2013). Annealing effects on titanium dioxide films by Sol-Gel spin coating method. Proceedings - RSM 2013: 2013 IEEE Regional Symposium on Micro and Nano Electronics, 159–162. https://doi.org/10.1109/RSM.2013.6706497
Swathi, K. E., Jinchu, I., Sreelatha, K. S., Sreekala, C. O., & Menon, S. K. (2018). Effect of microwave exposure on the photo anode of DSSC sensitized with natural dye. IOP Conference Series: Materials Science and Engineering, 310(1). https://doi.org/10.1088/1757-899X/310/1/012141
Tanihaha, S. L., Uranus, H. P., & Darma, J. (2010). Fabrication and characterization of dye-sensitized solar cell using blackberry dye and titanium dioxide nanocrystals. Proceedings - 2010 2nd International Conference on Advances in Computing, Control and Telecommunication Technologies, ACT 2010, 60–63. https://doi.org/10.1109/ACT.2010.46
Theivasanthi, T., & Alagar, M. (2013). Titanium dioxide (TiO2) Nanoparticles XRD Analyses: An Insight. http://arxiv.org/abs/1307.1091
Wu, S., Luo, X., Long, Y., & Xu, B. (2019). Exploring the Phase Transformation Mechanism of Titanium Dioxide by High Temperature in Situ Method. IOP Conference Series: Materials Science and Engineering, 493(1), 012010. https://doi.org/10.1088/1757-899X/493/1/012010
Zainol, M. N. Bin, & Mamat, M. H. (2017). Content variation of particle size in TiO2 paste as medium for electron transportation in dye sensitized solar cell. Proceedings - 14th IEEE Student Conference on Research and Development: Advancing Technology for Humanity, SCOReD 2016. https://doi.org/10.1109/SCORED.2016.7810081
Agarwal, R., Vyas, Y., Chundawat, P., Dharmendra, & Ameta, C. (2021). Outdoor Performance and Stability Assessment of Dye-Sensitized Solar Cells (DSSCs). In M. Aghaei (Ed.), Solar Radiation (p. Ch. 7). IntechOpen. https://doi.org/10.5772/intechopen.98621
Ali, F. H., & Alwan, D. B. (2018). Effect of particle size of TiO 2 and additive materials to improve dye sensitized solar cells efficiency. 12077. https://doi.org/10.1088/1742-6596/1003/1/012077
Cabezuelo, O., Diego-Lopez, A., Atienzar, P., Luisa, M. M., & Bosca, F. (2023). Optimizing the use of light in supported TiO2 photocatalysts: Relevance of the shell thickness. Journal of Photochemistry and Photobiology A: Chemistry, 444, 114917. https://doi.org/10.1016/J.JPHOTOCHEM.2023.114917
Cai, J., & Qi, L. (2015). Recent advances in antireflective surfaces based on nanostructure arrays. Materials Horizons, 2(1), 37–53. https://doi.org/10.1039/C4MH00140K
Ekar, S. U., Shekhar, G., Khollam, Y. B., Wani, P. N., Jadkar, S. R., Naushad, M., Chaskar, M. G., Jadhav, S. S., Fadel, A., Jadhav, V. V., Shendkar, J. H., & Mane, R. S. (2017). Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods. Journal of Solid-State Electrochemistry, 21(9), 2713–2718. https://doi.org/10.1007/S10008-016-3376-3/METRICS
Elsaeedy, H. I., Qasem, A., Yakout, H. A., & Mahmoud, M. (2021). The pivotal role of TiO2 layer thickness in optimizing the performance of TiO2/P-Si solar cell. Journal of Alloys and Compounds, 867, 159150. https://doi.org/10.1016/J.JALLCOM.2021.159150
Elshimy, H., Abdallah, T., & Shama, A. A. (2020). Optimization of Spin Coated TiO2 Layer for Hole-Free Perovskite Solar Cell. IOP Conference Series: Materials Science and Engineering, 762(1), 012003. https://doi.org/10.1088/1757-899X/762/1/012003
Jeng, M. J., Wung, Y. L., Chang, L. B., & Chow, L. (2013). Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013(1), 563897. https://doi.org/10.1155/2013/563897
Kazim, O. S., & Nwauzor, J. N. (2020). Analysis of Fabrication, Characterization and Performance of Dye-sensitized Solar Cell Using Natural Dye1. International Journal of Advancement in Development Studies. https://www.researchgate.net/publication/364330633_Analysis_of_Fabrication_Characterization_and_Performance_of_Dye-sensitized_Solar_Cell_Using_Natural_Dye1
Lallo, A. I. M. J., Prima, E. C., Suhendi, E., & Yuliarto, B. (2022). Effect of TiO2 thin film thickness and dye characterization using Binahong leaf (Anredera cordifolia) as photosensitizer in dye-sensitized solar cell. Journal of Aceh Physics Society, 11(4), 109–114. https://doi.org/10.24815/JACPS.V11I4.28302
N. T. Mary, R., Joshua. A., Vincent, J. K. L., A. Suresh, A. S., & Saritha, R. (2014). Natural Sensitizers for Dye Sensitized Solar Cell Applications. International Journal of Scientific & Engineering Research, Volume 5, Issue 3. https://www.researchgate.net/publication/264045910_Natural_Sensitizers_for_Dye_Sensitized_Solar_Cell_Applications
Nadzirah, S., & Hashim, U. (2013). Annealing effects on titanium dioxide films by Sol-Gel spin coating method. Proceedings - RSM 2013: 2013 IEEE Regional Symposium on Micro and Nano Electronics, 159–162. https://doi.org/10.1109/RSM.2013.6706497
Swathi, K. E., Jinchu, I., Sreelatha, K. S., Sreekala, C. O., & Menon, S. K. (2018). Effect of microwave exposure on the photo anode of DSSC sensitized with natural dye. IOP Conference Series: Materials Science and Engineering, 310(1). https://doi.org/10.1088/1757-899X/310/1/012141
Tanihaha, S. L., Uranus, H. P., & Darma, J. (2010). Fabrication and characterization of dye-sensitized solar cell using blackberry dye and titanium dioxide nanocrystals. Proceedings - 2010 2nd International Conference on Advances in Computing, Control and Telecommunication Technologies, ACT 2010, 60–63. https://doi.org/10.1109/ACT.2010.46
Theivasanthi, T., & Alagar, M. (2013). Titanium dioxide (TiO2) Nanoparticles XRD Analyses: An Insight. http://arxiv.org/abs/1307.1091
Wu, S., Luo, X., Long, Y., & Xu, B. (2019). Exploring the Phase Transformation Mechanism of Titanium Dioxide by High Temperature in Situ Method. IOP Conference Series: Materials Science and Engineering, 493(1), 012010. https://doi.org/10.1088/1757-899X/493/1/012010
Zainol, M. N. Bin, & Mamat, M. H. (2017). Content variation of particle size in TiO2 paste as medium for electron transportation in dye sensitized solar cell. Proceedings - 14th IEEE Student Conference on Research and Development: Advancing Technology for Humanity, SCOReD 2016. https://doi.org/10.1109/SCORED.2016.7810081
Aziz, M. A. S. A., Harun, M., & Ahmad, N. (2024). Tio2 as the Economically Semi Conducting Layer for Dye-Sensitized Solar Cell (DSSC) Application. International Journal of Academic Research in Economics and Management Sciences, 13(3), 188–201.
Copyright: © 2024 The Author(s)
Published by HRMARS (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcod