ISSN: 2222-6990
Open access
Poly (2,6-dimethyl-1,4-phenylene oxide)(PPO) was successfully converted into hollow fiber carbon membrane for H2/N2 separation study. The ideal separation parameters were enhanced by tuning the pyrolysis temperature, heating rate, and thermal soak time utilizing the Robeson’s 2008 upperbound and commercial boundary to obtain maximum balanced point between permeability and ideal selectivity. Using this approach, the optimum H2 permeability and H2/N2 ideal selectivity was 2868 Barrer and 586, respectively. SEM images depicted the surface of the PPO and carbon membranes were both dense, non-porous, symmetrical, and homogeneous. The estimated thickness of the carbon membranes was 14-15 µm. The permeability study indicated that the transport mechanism of the H2 across the membrane layer was dominated by molecular sieving. Excessively high or very low pyrolysis temperature reduced the H2 permeability and H2/N2 ideal selectivity. The H2/N2 ideal selectivity decreased against increasing heating rate as the H2 and N2 permeabilities increased significantly. Thermal soak time was highly effective in increasing the H2 permeability and H2/N2 ideal selectivity. Both H2 permeabilities and H2/N2 permselectivity from the binary test were considerably lower than the ideal separation values due to competitive gas transport through the membrane pore which was completely dominated by the larger N2.
Acharya, M., Raich, B. A., Foley, H. C., Harold, M. P., & Lerou, J. J. (1997). Metal-Supported Carbogenic Molecular Sieve Membranes:? Synthesis and Applications. Industrial & Engineering Chemistry Research, 36(8), 2924-2930. doi:10.1021/ie960769d
Bhide, B. D., & Stern, S. A. (1993). Membrane processes for the removal of acid gases from natural gas. I. Process configurations and optimization of operating conditions. Journal of Membrane Science, 81(3), 209-237. doi:https://doi.org/10.1016/0376-7388(93)85175-V
Campo, M., Magalhães, F., & Mendes, A. (2010). Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science - J MEMBRANE SCI, 350, 180-188. doi:10.1016/j.memsci.2009.12.026
Centeno, T. A., & Fuertes, A. B. (1999). Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science, 160(2), 201-211. doi:10.1016/S0376-7388(99)00083-6
Chen, Y. D., & Yang, R. T. (1994). Preparation of Carbon Molecular Sieve Membrane and Diffusion of Binary Mixtures in the Membrane. Industrial & Engineering Chemistry Research, 33(12), 3146-3153. doi:10.1021/ie00036a033
Foley, H. C. (1995). Carbogenic molecular sieves: synthesis, properties and applications. Microporous Materials, 4(6), 407-433. doi:https://doi.org/10.1016/0927-6513(95)00014-Z
Fu, S., Sanders, E. S., Kulkarni, S. S., & Koros, W. J. (2015). Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors. Journal of Membrane Science, 487, 60-73.
doi:https://doi.org/10.1016/j.memsci.2015.03.079
Fuertes, A. B., & Centeno, T. A. (1998). Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science, 144(1), 105-111. doi:https://doi.org/10.1016/S0376-7388(98)00037-4
Geiszler, V. C., & Koros, W. J. (1996). Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties. Industrial & Engineering Chemistry Research, 35(9), 2999-3003. doi:10.1021/ie950746j
Go, Y., Lee, J. H., Shamsudin, I. K., Kim, J., & Othman, M. R. (2016). Microporous ZIF-7 membranes prepared by in-situ growth method for hydrogen separation. International Journal of Hydrogen Energy, 41(24), 10366-10373.
doi:https://doi.org/10.1016/j.ijhydene.2015.09.060
Hatori, H., Yamada, Y., & Shiraishi, M. (1992). Preparation of macroporous carbon films from polyimide by phase inversion method. Carbon, 30(2), 303-304.
oi:https://doi.org/10.1016/0008-6223(92)90094-D
Hayashi, J.-i., Mizuta, H., Yamamoto, M., Kusakabe, K., & Morooka, S. (1997). Pore size control of carbonized BPDA-pp? ODA polyimide membrane by chemical vapor deposition of carbon. Journal of Membrane Science, 124(2), 243-251.
doi:https://doi.org/10.1016/S0376-7388(96)00250-5
He, X., & Hägg, M.-B. (2011). Optimization of Carbonization Process for Preparation of High Performance Hollow Fiber Carbon Membranes. Industrial & Engineering Chemistry Research, 50, 8065-8072. doi:10.1021/ie2003279
Ismail, A. F., & David, L. I. B. (2001). A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science, 193(1), 1-18. doi:https://doi.org/10.1016/S0376-7388(01)00510-5
Itta, A. K., & Tseng, H.-H. (2011). Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors. International Journal of Hydrogen Energy, 36(14), 8645-8657.
doi:https://doi.org/10.1016/j.ijhydene.2011.03.146
Itta, A. K., Tseng, H.-H., & Wey, M.-Y. (2011). Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. Journal of Membrane Science, 372(1), 387-395.
doi:https://doi.org/10.1016/j.memsci.2011.02.027
Jones, C. W., & Koros, W. J. (1994). Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors. Carbon, 32(8), 1419-1425. doi:https://doi.org/10.1016/0008-6223(94)90135-X
Katsaros, F. K., Steriotis, T. A., Stubos, A. K., Mitropoulos, A., Kanellopoulos, N. K., & Tennison, S. (1997). High pressure gas permeability of microporous carbon membranes. Microporous Materials, 8(3), 171-176. doi:https://doi.org/10.1016/S0927-6513(96)00080-6
Kim, Y. K., Park, H. B., & Lee, Y. M. (2003). Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties. Journal of Membrane Science, 226(1), 145-158.
doi:https://doi.org/10.1016/j.memsci.2003.08.017
Kita, H., Yoshino, M., Tanaka, K., & Okamoto, K.-i. (1997). Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communication, 1051-1052.
oi:https://doi.org/10.1039/A700048K
Koros, W. J., & Mahajan, R. (2000). Pushing the limits on possibilities for large scale gas separation: which strategies? Journal of Membrane Science, 175(2), 181-196. doi:https://doi.org/10.1016/S0376-7388(00)00418-X
Li, L., Song, C., Jiang, H., Qiu, J., & Wang, T. (2014). Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer. Journal of Membrane Science, 450, 469-477.
doi:https://doi.org/10.1016/j.memsci.2013.09.032
Li, L., Wang, C., Wang, N., Cao, Y., & Wang, T. (2015). The preparation and gas separation properties of zeolite/carbon hybrid membranes. Journal of Materials Science, 50(6), 2561-2570. doi:10.1007/s10853-015-8819-1
Li, L., Wang, T., Liu, Q., Cao, Y., & Qiu, J. (2012). A high CO2 permselective mesoporous silica/carbon composite membrane for CO2 separation. Carbon, 50(14), 5186-5195. doi:https://doi.org/10.1016/j.carbon.2012.06.060
Tanco, L. M. A., Tanaka, P. D. A., & Mendes, A. (2015). Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: Effect of the carbonization temperature on the gas permeation properties. International Journal of Hydrogen Energy, 40(8), 3485-3496.
doi:https://doi.org/10.1016/j.ijhydene.2014.11.025
Tanco, L. M. A., Tanaka, P. D. A., Rodrigues, S. C., Texeira, M., & Mendes, A. (2015). Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies. International Journal of Hydrogen Energy, 40(16), 5653-5663.
doi:https://doi.org/10.1016/j.ijhydene.2015.02.112
Lua, A. C., & Su, J. (2006). Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton® polyimide. Carbon, 44(14), 2964-2972. doi:https://doi.org/10.1016/j.carbon.2006.05.028
Ma, X., Lin, Y. S., Wei, X., & Kniep, J. (2016). Ultrathin carbon molecular sieve membrane for propylene/propane separation. 62(2), 491-499. doi:10.1002/aic.15005
Norharyati, W., & Ismail, A. (2012). Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. AIChE Journal, 58. doi:10.1002/aic.13711
Okamoto, K.-i., Kawamura, S., Yoshino, M., Kita, H., Hirayama, Y., Tanihara, N., & Kusuki, Y. (1999). Olefin/Paraffin Separation through Carbonized Membranes Derived from an Asymmetric Polyimide Hollow Fiber Membrane. Industrial & Engineering Chemistry Research, 38(11), 4424-4432. doi:10.1021/ie990209p
Rao, M. B., & Sircar, S. (1993). Nanoporous carbon membranes for separation of gas mixtures by selective surface flow. Journal of Membrane Science, 85(3), 253-264.
doi:https://doi.org/10.1016/0376-7388(93)85279-6
Rivaton, A. (1995). Photochemical and thermal oxidation of poly(2,6-dimethyl-1,4-phenylene oxide). Polymer Degradation and Stability, 49(1), 11-20.
doi:https://doi.org/10.1016/0141-3910(95)00059-U
Robeson, L. M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1), 390-400. doi:https://doi.org/10.1016/j.memsci.2008.04.030
Salleh, W. N. W., & Ismail, A. F. (2012). Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation. 58(10), 3167-3175. doi:10.1002/aic.13711
Salleh, W. N. W., Ismail, A. F., Matsuura, T., & Abdullah, M. S. (2011). Precursor Selection and Process Conditions in the Preparation of Carbon Membrane for Gas Separation: A Review. Separation & Purification Reviews, 40(4), 261-311.
doi:10.1080/15422119.2011.555648
Saufi, S. M., & Ismail, A. F. (2004). Fabrication of carbon membranes for gas separation––a review. Carbon, 42(2), 241-259. doi:https://doi.org/10.1016/j.carbon.2003.10.022
Sazali, N., Salleh, W. N. W., Nordin, M. N. A. H., Harun, Z., & Ismail, A. F. (2015). Matrimid-based carbon tubular membranes: The effect of the polymer composition. 132(33). doi:10.1002/app.42394
Shusen, W., Meiyun, Z., & Zhizhong, W. (1996). Asymmetric molecular sieve carbon membranes. Journal of Membrane Science, 109(2), 267-270.
doi:https://doi.org/10.1016/0376-7388(95)00205-7
Suda, H., & Haraya, K. (1995). Molecular sieving effect of carbonized kapton polyimide membrane. Journal of the Chemical Society, Chemical Communications(11), 1179-1180. doi:10.1039/C39950001179
Teixeira, M., Rodrigues, S. C., Campo, M., Tanaka, P. D. A., Tanco, L. M. A., Madeira, L. M., Mendes, A. (2014). Boehmite-phenolic resin carbon molecular sieve membranes—Permeation and adsorption studies. Chemical Engineering Research and Design, 92(11), 2668-2680. doi:https://doi.org/10.1016/j.cherd.2013.12.028
Wang, S., Zeng, M., & Wang, Z. (1996). Carbon Membranes for Gas Separation. Separation Science and Technology, 31(16), 2299-2306. doi:10.1080/01496399608001048
Wei, W., Qin, G., Hu, H., You, L., & Chen, G. (2007). Preparation of supported carbon molecular sieve membrane from novolac phenol–formaldehyde resin. Journal of Membrane Science, 303(1), 80-85. doi:https://doi.org/10.1016/j.memsci.2007.06.055
White, L. S., Blinka, T. A., Kloczewski, H. A., & Wang, I. f. (1995). Properties of a polyimide gas separation membrane in natural gas streams. Journal of Membrane Science, 103(1), 73-82. doi:https://doi.org/10.1016/0376-7388(94)00313-N
Xu, L., Rungta, M., & Koros, W. J. (2011). Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. Journal of Membrane Science, 380(1), 138-147. doi:https://doi.org/10.1016/j.memsci.2011.06.037
Yoshimune, M., Fujiwara, I., Suda, H., & Haraya, K. (2005). Novel Carbon Molecular Sieve Membranes Derived from Poly(phenylene oxide) and Its Derivatives for Gas Separation. Chemistry Letters - CHEM LETT, 34, 958-959. doi:10.1246/cl.2005.958
Yun, S., & Ted Oyama, S. (2011). Correlations in palladium membranes for hydrogen separation: A review. Journal of Membrane Science, 375(1), 28-45.
doi:https://doi.org/10.1016/j.memsci.2011.03.057
Zhang, B., Dang, X., Wu, Y., Liu, H., Wang, T., & Qiu, J. (2014). Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts. Journal of Materials Research, 29(23), 2881-2890. doi:10.1557/jmr.2014.327
Zhang, B., Shen, G., Wu, Y., Wang, T., Qiu, J., Xu, T., & Fu, C. (2009). Preparation and Characterization of Carbon Membranes Derived from Poly(phthalazinone ether sulfone) for Gas Separation. Industrial & Engineering Chemistry Research, 48(6), 2886-2890. doi:10.1021/ie8013583
Zhang, B., Wang, T., Zhang, S., Qiu, J., & Jian, X. (2006). Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon, 44(13), 2764-2769. doi:https://doi.org/10.1016/j.carbon.2006.03.039
Zhang, B., Wu, Y., Lu, Y., Wang, T., Jian, X., & Qiu, J. (2015). Preparation and characterization of carbon and carbon/zeolite membranes from ODPA–ODA type polyetherimide. Journal of Membrane Science, 474, 114-121.
doi:https://doi.org/10.1016/j.memsci.2014.09.054
In-Text Citation: (Jaya et al., 2021)
To Cite this Article: Jaya, M. A. T., Tarmizi, M. H., Yusop, M. F. M., Ahmad, M. A., Gonawan, F. N., Nizam, M. K., & Ismail, A. F. (2021). Improving Ideal Performance of Hollow Fiber Carbon Membrane for H2/N2 Separation. International Journal of Academic Research in Business and Social Sciences, 11(1), 903-920.
Copyright: © 2021 The Author(s)
Published by HRMARS (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licences/by/4.0/legalcode